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1. When simulating multiphase flows on fixed grids we must update the density and viscosity fields along 
with the fluid velocity. This can be done in several different ways and in this segment we will give a brief 
overview of the different strategies most commonly used. In the following lectures we will then describe 
one approach, front tracking, in more details.
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If the various properties are constants
in each fluid, the density and viscosity, 
for example, are given by:

The marker function moves 
with the fluid velocity:
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@t
+ u ·rf = 0 ⇢ = ⇢(f) µ = µ(f)

and
Integrating this equation in 
time, for a discontinuous 
initial data, is one of the 
hard problems in 
computational fluid 
dynamics!

The different fluids are 
identified by a marker 
function, defined by:

2-1. If the material properties in each fluid are constant, we do not need to keep track of where every 
fluid point goes, but simply know in which fluid we are. Thus, the problem is reduced to updating a 
marker function identifying each fluid. Although a material property, such as the density, can be used as 
a marker, here we will assume that the marker is an index function H that is one in one fluid and zero in 
the other, assuming that we are working with two fluids only. Once H is known, the density and viscosity, 
and other properties can be set as functions of H. The marker function moves with the fluid and we can 
therefore, at least in principle, find where H is one and where H is zero by solving a simple advection 
equation, stating that the time derivative of H, plus the dot product of the velocity with the gradient of H 
must be equal to zero.
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Integrating this equation in 
time, for a discontinuous 
initial data, is one of the 
hard problems in 
computational fluid 
dynamics!

The different fluids are 
identified by a marker 
function, defined by:

2-2. You may recall that the sum of those two terms is the material derivative and the equation therefore 
says that H of a given material point does not change, which hopefully seems reasonable. Pushing a blob 
of a marker function that identifies a given region, by a given velocity field may seems like a trivial 
problem and it is somewhat hard to believe that it is actually a very difficult one that many people have 
worked on. 
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Advecting the marker function using standard methods 
leads to either excessive smearing for low order methods 
or oscillations when higher order methods are used. 

The figure shows the solution of

for U =1, computed by a 
first order upwind method 
(blue line) and a higher 
order Lax-Wendroff method 
(red line) after propagating 
0.6 times the domain 
length, using 80 grid points 
to resolve the domain.
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3-1. The obvious question is, of course, why is advecting a blob with a given velocity hard? Can’t we 
simply take a standard method suitable for the solution of a hyperbolic equation and use that? In the 
figure we show the results of doing exactly that, for a one-dimensional advection with U equal to 1. We 
use two standard numerical methods, the first order upwind method and the second order Lax-Wendroff 
method. The initial conditions consist of a step change at the left boundary and the figure shows the 
results after the marker function has been advected 0.6 times the domain length to the right, using 80 
grid points to resolve the whole domain. The thin black line shows what the solution should look like and 
it is obvious that neither method does a good job. The blue line shows that the first order method 
smears out the steep change in H and the higher order method---the red line---produces a solution with 
large oscillations behind the step. This is what is generally found for linear, or classical, schemes.
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3-2. First order methods result in excessive smearing and higher order methods introduce oscillations. 
While nonlinear schemes have been developed that do a much better job at capturing sharp 
discontinuities without oscillations, they tend to do very well for shocks in compressible flows and not 
quite as well for interfaces separating different fluids. Furthermore, since the value on both sides of the 
discontinuity are known, one is zero and the other one is one, it seems that we should be able come up 
with methods that do better. This is indeed the case and several methods have been designed for the 
specific task of advecting a marker function that takes one constant value on one side of the interface 
and another constant value on the other.
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Specialized methods to advect the marker function

Volume of Fluid: The average value of the marker function in 
each cell is updated by computing the flux of markers between 
cells

Level Sets: The interface is identified by the zero contour of a 
smooth function advected by methods for hyperbolic functions 
with smooth solutions

Front Tracking: The interface is marked by connected marker 
points that are advected by the fluid velocity interpolated from 
a fixed grid

Both the Level Set and the Front Tracking methods require the 
construction of the marker function from the interface location

4. Of the several methods that have been designed to advect a marker function that takes one constant 
value on one side of the interface and another constant value on the other, the best known are the 
Volume of Fluid method where the average value of the marker function in each cell is updated by 
computing the flux of markers between cells; the level set method where the interface is identified as the 
zero contour of a smooth function advected by methods for hyperbolic functions with smooth solutions; 
and the front tracking method where the interface is marked by connected marker points that are moved 
by the fluid velocity interpolated from a fixed grid. All of these methods come in several different 
versions. Notice that only in the volume of fluid method is the marker function updated directly and that 
in both the level set and the front tracking method we need to construct the marker function from the 
interface location.
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The sharp marker function H can be approximated in 
several different ways for computational purposes. 
Below we show a smoothed marker function, I, the 
volume of fluid approximation, C, and a level set 
representation, Φ. 

Advecting the Marker Function

Interface 
cell

j-1 j j+1

j-1/2 j+1/2

ϕ(x)

I(x)

H(x)

Cj

j-1        j          j+1

Cj-1      Cj        Cj+1
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5. Although the methods listed on the previous slide have much in common, they differ in exactly what is 
advected and how the marker function is approximated. In the Volume of Fluid method we work with the 
average value of the marker in each computational cell and advect the marker directly. In the figure this 
is shown by C, which has a constant value everywhere, either 0 or 1, except in the interface cell j. In level 
set methods we advect a smooth functions, phi of x---shown by a nearly straight dashed dot line in the 
figure---which crosses the zero axis where the interface is located. And in front tracking methods we 
advect a point that is located exactly where the interface is, or where the discontinuity in H is. We do, 
however, need a marker function so for both level set and front tracking methods this needs to be 
constructed from the interface location. Although the construction of the marker function is different, in 
both methods the marker is generally taken to have a smooth transition from one constant value to the 
next, so that it looks like the dashed line, shown by I of x, in the figure. We now take a slightly closer look 
at these methods.
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Volume of Fluid

6. The Volume of Fluid method is the most widely used approach to update the marker function. In one 
dimension the advection of a sharp discontinuity separating regions of constant value is exact. This 
makes it a natural starting point for multidimensional problems, but unfortunately the extension to 
higher dimensions is far from trivial and requires making rather significant approximations.
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Upwind

To advect a discontinuous marker function, first consider 1D 
advection. Using simple upwind leads to excessive diffusion 
due to averaging the function over each cell, before finding 
the fluxes. 

The remedy is to compute the fluxes more accurately such 
that nothing flows into cell j+1 until cell j is full

j-1 j j+1
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F(x)
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j-1        j          j+1
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7. The challenge of advecting a marker function using a standard finite volume method is best 
introduced by an example. Consider the situation in the first figure. The interface is located in the middle 
cell and since we only keep the average value of the marker function the cell is half full. By itself, the 
average value does not specify the exact location of the interface since in general there are two 
possibilities, depending of whether fluid 1 is located to the left or right of the interface. To update the 
marker we compute the flux of the marker through the cell boundary and for the linear advection 
equation this is easily done. Indeed, given the initial conditions we simply move the marker with a 
constant velocity to the left or right, depending on the sign of the velocity. If the velocity is positive, the 
marker moves to the right and we update the marker by moving everything a distance U delta t to the 
right, as shown in the middle frame, and then average as shown in the frame on the right. Unfortunately, 
the interface is now spread over two cells and if we continue the process the interface will continue to 
spread out, or diffuse, over more and more cells.
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One-dimensional Volume-Of-Fluid

Since the marker function only takes on two values, 0 and 1, 
the advection can be made much more accurate by 
“reconstructing” the function in each cell before finding the 
fluxes, integrated over time:

16

0.9 Advecting Interfaces-Intro

@f

@t
+ U

@f

@x
= 0

fn+1
j

= fn

j

� �tU

�x

⇣

fn

j

� fn

j�1

⌘

f
n+1/2
j+1/2 =

1

2
(fn

j+1 + fn

j

)� �tU

2�x

�

fn

j+1 � fn

j

�

fn+1
j

= fn

j

� �tU

�x

�

f
n+1/2
j+1/2 � f

n+1/2
j�1/2

�

n
x

(i, j) =
C(i+ 1, j)� C(i� 1, j)

2�x
(32)

n
y

(i, j) =
C(i, j + 1)� C(i, j � 1)

2�y

@H

@t
+ u ·rH = 0 ⇢ = ⇢(H) µ = µ(H)

@H

@t
+ U

@H

@x
= 0

H(x) =

⇢

1 in fluid 1
0 in fluid 2

@f

@t
+ u ·rf = 0 ⇢ = ⇢(f) µ = µ(f)

@�

@t
+ u ·r� = 0

n =
r�

|r�| u · n = u
n

@�

@t
+ u

n

|r�| = 0

I(�) =

8

<

:

0 if � < �↵�x
1
2 (1 +

�

↵�x

+ 1
⇡

sin(⇡ �

↵�x

) if |�|  ↵�x
1 if � > ↵�x

� = rI =
dI

d�
r�

@�

@⌧
+ sgn(�)(|r�|� 1) = 0

|r�| = 1 ⌧ I(�) �

Z

t+�t

t

F
j+1/2 dt =

⇢

0, if �t  (1� f
j

)�x/U,
�x� (f

j

+ U�t), if �t > (1� f
j

)�x/U

Z

t+�t

t

F
j+1/2 dt =

⇢

0, if �t  (1� C
j

)�x/U,
�x� (C

j

+ U�t), if �t > (1� C
j

)�x/U

j-1 j j+1

j-1/2 j+1/2

F(x)

I(x)

H(x)

Cj

j-1        j          j+1

Cj-1      Cj        Cj+1

U

j-1        j          j+1

UΔt

j-1        j          j+1

Cj-1      Cj        Cj+1

j-1        j          j+1

Cj-1      Cj        Cj+1

U

j-1        j          j+1

UΔt

j-1        j          j+1

Cj-1      Cj        Cj+1

8-1. The problem, obviously, is that we took the initial conditions to be the average value in the cell so 
when we move the marker to the right, the cell on the right of the interface cell starts to receive marker, 
even if the middle cell is not full. The solution is to look to the neighboring cells, determine that the 
marker is non-zero on the left (in this case) and use that to reconstruct more realistic initial conditions. It 
is, in particular, easy to determine exactly where the interface is. If the value is C_j, then the interface is 
C_j times delta x from the left boundary and if the size of the time step is such that the interface moves 
less than 1-C_j times delta x, or when U delta t is less than 1-C_j delta x, then nothing should flow into 
the cell on the right. If the time is greater, or if U delta t is greater than 1-C_j times delta x then the total 
amount of C that flows from cell j to cell j+1 is U delta t minus the amount of C that remained in cell j, or 
delta x minus C_j times U delta t.

DNS of Multiphase Flows

One-dimensional Volume-Of-Fluid

Since the marker function only takes on two values, 0 and 1, 
the advection can be made much more accurate by 
“reconstructing” the function in each cell before finding the 
fluxes, integrated over time:
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8-2. The flux through the right boundary of the middle cell is therefore zero if delta t is less than 1-C_j 
times delta x, divided by U, and delta x minus C_j plus U times delta t if delta t is greater than 1-C_j 
times delta x, divided by U. The flux into the cell is simply U times delta t, since C in the j-1 cell is equal 
to 1. The key here is that we located the interface exactly by examining the neighboring cells and this 
allowed us to write down the exact flux in such a way that the cells fill up one by one and no diffusion 
takes place.
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While VOF works extremely well in one-dimension, there 
are considerable difficulties extending the approach to 
higher dimensions. The basic problem is the 
“reconstruction” of the interface in each cell, given the 
volume fraction in neighboring cells. 

In the Simple Line Interface Calculations or SLIC method 
the interface was taken to be perpendicular to the 
advection direction.

In the Hirt/Nichols method the interface was taken to be 
parallel to one axis. 

In Piecewise Linear Interface Calculations or PLIC the 
interface is a line with arbitrary orientation.

9-1. The simplest extension of this straightforward method to two and three-dimensions is to do the 
advection in one direction at a time, using the one-dimensional formulation. In this approach, known as 
the Simple Line Interface Calculation or SLIC, we construct a horizontal interface for advection in the 
vertical direction, followed by constructing a vertical interface for advection in the horizontal direction. 
The problem with this approach is that the cells on either side of the interface cell are not always full or 
completely empty and not only does that introduce uncertainty in locating the interface but the interface 
can also break up due to the generation of partially full cells away from the interface. In an effort to 
improve the SLIC method, Hirt and Nichols suggested that the interface in each cell should be 
approximated as either a vertical or horizontal one, based on a normal vector estimated by considering 
the volume fraction in neighboring cells. While this did not result in a significant improvement, it 
suggested that an interface reconstruction based on the normal might lead to better results.



DNS of Multiphase Flows

While VOF works extremely well in one-dimension, there 
are considerable difficulties extending the approach to 
higher dimensions. The basic problem is the 
“reconstruction” of the interface in each cell, given the 
volume fraction in neighboring cells. 

In the Simple Line Interface Calculations or SLIC method 
the interface was taken to be perpendicular to the 
advection direction.

In the Hirt/Nichols method the interface was taken to be 
parallel to one axis. 

In Piecewise Linear Interface Calculations or PLIC the 
interface is a line with arbitrary orientation.

9-2. This is, indeed, the case and the next improvement was the Piecewise Linear Interface Calculation 
method or PLIC, where the interface is assumed to consist of a line whose orientation is based on an 
estimation of the normal to the interface and whose location is adjusted such that the average value of 
the marker in the interface cell is correct. This improved considerably the performance of Volume of Fluid 
methods, but at the cost of much more complex flux calculations. 

DNS of Multiphase Flows

Original SLIC

PLICHirt/Nichols 
VOF

10. This slide shows the various version of the Volume of Fluid method schematically. The configuration 
of the fluid interface and the grid used to represent the field is shown in the upper left corner. The 
original split VOF method, the SLIC method is shown in the upper right corner, where the solid and the 
dashed line show the orientation for advection in the different directions. The Hirt and Nichols method, 
where the interface in each cell is assumed to be either vertical or horizontal is shown in the lower left 
corner and finally, the PLIC method, where the interface is approximated by a sloping line that may be 
discontinuous at cell boundaries, is shown in the lower right corner. More sophisticated VOF methods 
are continuously being developed and many of those do an excellent job of following sharp interfaces.
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There are many versions of PLIC, but in all cases the 
steps are:

1.Given the value of the marker function in each cell, 
estimate the normal.

2. Given the value of the marker function in each cell 
and the normal, reconstruct the interface (slope and 
location of the line bisecting the control volumes with 
fractional values of the marker function).

3. Advect the marker function and find the value of the 
marker function in each cell at the next time step.

11. There are many versions of PLIC, but in all cases the first step is to estimate the normal vector in each 
cell, given the value of the marker function in the cell that we are considering and in the neighboring 
cells. Once we have the normal, we draw a line perpendicular to the normal and move it in the direction 
of the normal until the area cut out from the interface cell by the line matches the value of the marker 
function in the cell. Knowing the shape of the region occupied by the marker function in each interface 
cell then allows us to advect the marker using geometric considerations.
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Given the volume 
fraction in each cell, we 
start by finding the 
normals. 

This can be done in 
several ways, but here 
we use simple centered 
differences of the 
volume fractions. 

In many cases smoother 
approximations are 
used or the results are 
averaged over a few 
cells.

C(i,j)=0.933C(i-1,j)=1.000 C(i+1,j)=0.249

C(i-1,j+1)
        = 0.715

C(i,j+1)
        = 0.091

C(i+1,j+1)
        = 0.000
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12. The normal can be found in many ways but in most cases it is estimated to be the gradient of the 
marker function. Since the marker function changes abruptly from one to zero over only one cell, some 
smoothing is generally involved, but the simplest approximation is to use centered differences as shown 
here. Notice that both the interface cells and cells close to the interface have a non-zero normal. 
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Interface is moved along the normal to give the correct 
value of the marker in the cell under consideration

Once the normal has been 
determined, the location of the 
interface is adjusted to give 
the correct value of the 
volume fraction of the marker 
in the cell.
The normal and the fractional 
value of the marker in the 
interface cell determine the 
shape of the region occupied 
by the marker in each cell 

The normal to the interface

13. Once the normal is found, the slope of the interface is known. We approximate the interface by a 
straight line perpendicular to the normal and the location of the interface is found by moving it along the 
normal until the area below the interface matches the volume fraction of marker, in the interface cell.

DNS of Multiphase Flows

The marker function can be 
advected in many ways. 
The simplest is to move the 
marker first in one direction 
and then in the other, 
assuming that the velocity 
remains constant during 
the time step.

Here we consider a velocity  
advecting the marker in the 
positive x and y directions.

U
u

v

Full 
cell

Full cell
i-1,j-1

i,j

i-1,j

i,j-1

i,j+1

i+1,j

14. The marker can be advected in several ways but the simplest approach is to advect it first in one 
direction and then in the other. Consider the cell shown in the figure, where the interface cuts through 
the top and the right side of the cell and the cells to the left and below are full. If we assume that the 
velocity remains constant during the time step then advection in the x-direction corresponds to shifting 
everything in the cell a distance equal to u times delta t, where u is the x-component of the velocity.
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Here, the gray region at the right will move out of cell i,j and 
the gray region at the left will move into cell i,j.

U
u

v

uΔtuΔt

i-1,j-1

i,j

i-1,j

i,j-1

i,j+1

i+1,j

The marker function can be 
advected in many ways. 
The simplest is to move the 
marker first in one direction 
and then in the other, 
assuming that the velocity 
remains constant during 
the time step.

Here we consider a velocity  
advecting the marker in the 
positive x and y directions.

15. Here, the gray region on the right will move out of cell i,j and the gray region on the left will move 
into cell i,j.

DNS of Multiphase Flows

Marker advected from cell 
i-1,j into cell i,j during 
advection in the x-direction

U
u

v Marker advected from cell 
i,j into cell i+1,j during 
advection in the x-direction

Marker advected from cell i-1,j-1 into cell 
i,j-1 during advection in the x-direction

i-1,j-1

i,j

i-1,j

i,j-1

i,j+1

i+1,j

16. Thus, the total amount of marker that flows into cell i,j from the cell on the left, i-1,j, is given by the 
gray tall rectangle on the left and the total amount of marker that flows out of cell i,j into cell i+1,j on the 
right is given by the gray polygon on the right.
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The advection in the y-
direction is done in the 
same way.

The interfaced is 
reconstructed again and 
the regions that will move 
into new cells identified. 
Here, the gray region at 
the top will move out of 
cell i,j and the gray region 
at the bottom will move 
into cell i,j.

U
u

v

vΔt

i-1,j-1

i,j

i-1,j

i,j-1

i,j+1

i+1,j

vΔt

17. The advection in the y-direction is done in the same way. The interfaced is reconstructed from the 
fraction of the marker in the interface cell and the normal vector, computed using the amount of marker 
in the neighboring cells, and the regions that will move into new cells are identified. Here, the gray 
region at the top will move out of cell i,j and the gray region at the bottom will move into cell i,j.
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Marker advected from cell i,j 
into cell i,j+1 during advection 
in the y-direction

Marker advected from cell i-1,j-1 into cell i,j by advecting 
first in the x direction and then in the y direction

Marker advected from cell 
i,j-1 into cell i,j during 
advection in the y-direction

i-1,j-1

i,j

i-1,j

i,j-1

i,j+1

i+1,j

18. The total amount of marker that flows into cell i,j from the cell on the bottom, i,j-1, is given by the 
gray wide rectangle at the bottom and the total amount of marker that flows out of cell i,j into cell i,j+1 
is given by the gray polygon on the top.
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To maintain symmetry with respect to x and y, the order 
of advection is usually alternated.
This simple scheme conserves the marker function C, 
but does not guarantee that it remains bounded between 
0 and 1. 

More advanced method conserve C and ensure that 
0<C<1.

For fully three-dimensional schemes both the 
reconstructing of the interface as well as the advection 
requires careful considerations of the interface geometry

19. To maintain symmetry with respect to x and y, the order of advection is usually alternate. [Pause] The 
approach described here conserves the marker function C, since what flows out of one cell flows into 
another cell, but does not guarantee that it remains bounded between 0 and 1. However, more 
advanced methods exists that both conserve C and ensure that it is bounded between 0 and 1. For fully 
three-dimensional schemes both the reconstruction of the interface, as well as the advection, are 
considerably more complex and require careful considerations of the interface geometry

DNS of Multiphase Flows

Level Set 
Methods

20. Given how difficult it is to advect a sharp interface in multi-dimensions, we might ask why bother with 
a sharp interface, at all? The interface can be identified as a constant value contour of a smooth function 
and it is much easier to advect smooth fields than discontinuous ones. This is the idea behind the Level 
Set method. 
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Identify the interface as a “level-
set” of a smooth function

Advect the level set function by

use

to get
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21. In the level set method we identify the interface with a given value (usually taken to be zero) of a 
smooth function phi. Phi is then advected with the fluid and since the interface is a material point, the 
zero contour, or the level set, is advected as well. Since it is only the normal velocity that matters, the 
advection equation is usually rewritten by using that the unit normal to the interface can be found as the 
gradient of the level set function divided by the magnitude of the gradient, and that the velocity dotted 
into the unit normal is the normal velocity. Wherever the level set function phi is zero, there is an 
interface, and for the two-peaked function shown here, there are two closed interfaces since two peaks 
stick out through the zero plane.

DNS of Multiphase Flows

The level set function can be arbitrarily smooth. To identify 
each fluid it is necessary to construct a marker function with 
a narrow transition zone
The marker function can be generated by (for example):

The delta function is 
generated as the derivative 
of the marker function 
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we need is to update the marker function. The zero level set only gives us the location of the interface. 
Thus, we need to map the smooth level set function into a marker function that changes rapidly, but 
smoothly, from one constant value to another constant value. Furthermore, we generally want the shape 
of the transition zone to remain more or less the same everywhere and at all times. If the shape of the 
level set function in the vicinity of the zero contour remained the same this would be easily accomplished 
and we could simply pick a mapping function, such as the sine function shown here. Once the marker 
function has been determined, we can obviously also find a smooth approximation to the delta function 
by differentiation. This can obviously be related to the level set function as shown at the bottom of the 
slide.

DNS of Multiphase Flows

The distortion makes the transition zone from one level of the 
marker function to the other depend on the history of the flow

For most applications, the shape of the level set functions 
must remain the same close to the interface so that the width 
of the transition zone for the indicator function remains 
approximately constant. The flow does, however, usually 
distort the shape

23. Unfortunately the level set function is generally distorted significantly by non-uniform flows around 
the interface. If the interface is being stretched, for example, the gradient of the level set function 
increases and if it is compressed the gradient decreases, making the level set function flatter. In the 
example here, where we have stagnation point flow on the left, the level set function is compressed, 
making the transition in the marker function steeper and on the right, where the flow is reversed, the 
transition zone becomes thicker. 
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Usually only a few “time steps” are necessary since the level 
set function only has to be corrected near the interface. 

To keep the interface shape the same, the level set function 
is “reinitialized” once in a while. This is usually done by 
making it a distance function, where            . This can be 
enforced by solving 

in ‘pseudo” time   .
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24. In order to make the marker function transition from one value to the other in the same way 
everywhere, the level set function must be reset in such a way that its slope is always the same next to 
the interface. In the original level set method this was achieved by reinitializing the level set function so 
that it remained a distance function, whose value was equal to the shortest distance to the interface. The 
gradient of a distance function is normal to the interface and should remain unity, for the level set 
function to remain a distance function. This can be done by setting the difference between the absolute 
value of the gradient and unity equal to the time derivative of level set function and solving it in pseudo 
time where the interface remains stationary and the real time is frozen. Obviously, if the time derivative is 
zero, then the absolute value of the gradient is equal to unity. The sign function accounts for the fact that 
the level set function changes sign across the interface but the gradient does not. Usually we are only 
concerned with the shape of the level set function close to the interface and we only need to solve the 
re-initialization equation to correct the shape there. 

DNS of Multiphase Flows

Front-Tracking 
Methods

25. Unlike the VOF method where the marker function is updated directly, in the level set method the 
update of the marker function is a two-step process. First, the interface is advected and second, the 
marker function is constructed from the smooth function. Front tracking is also a two-step process where 
the interface is first moved and the marker function is then constructed. The identification of the 
interface and how it is moved is, however, very different.

DNS of Multiphase Flows

The interface is identified by connected marker particles that are 
advcted by the fluid velocity, interpolated from the grid used to 
solve the Navier-Stokes equations

The marker particles and their connections are usually referred to 
as the FRONT

The marker function is then constructed from the location of the 
front and used to set the density and the viscosity

The front is also used to compute surface tension, which must be 
distributed to the fixed grid and added to the Navier Stokes 
equations

The front usually deforms as the flow evolves and must be modified 
by adding and deleting points and elements

26. In its simplest embodiment the interface in Front Tracking is represented by connected marker 
particles that move with the fluid velocity. For two-dimensional flows the front is simply a string of points, 
but in three-dimensions the front is a two-dimensional surface that needs to be represented by a surface 
grid of some sort to account for the connectivity of the markers. The marker particles and the 
connections are usually referred to as the front. The marker particles are advcted by the fluid velocity, 
interpolated from the grid used to solve the Navier-Stokes equations. The marker function is then 
constructed from the location of the front and used to set the density and the viscosity. The front is also 
used to compute surface tension, which must be distributed to the fixed grid and added to the Navier 
Stokes equations. The front usually deforms as the flow evolves and must be modified by adding and 
deleting marker points.
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Fixed grid used for the solution of 
the Navier-Stokes equations. 
Relatively standard explicit finite 
volume fluid solver

Tracked front consisting of marker 
points connected by triangular 
elements, forming an unstructured 
grid, used to advect the marker 
function and find surface tension

The front management, adding 
and deleting points, as well as 
changing the topology of the front 
when needed, are generally 
considered the main challenges 
with front tracking  

27. Here we show the front and the fixed grid used to solve the Navier-Stokes equations. The fluid solver 
is usually a relatively standard finite volume method implemented on a regular structured grid, although 
as with the level set and the volume of fluid method we can in principle use any flow solver. For three-
dimensional flow the interface is an imbedded two-dimensional surface, and since its geometry can be 
fairly complex, we usually use an unstructured grid, typically consisting of points that are connected by 
triangular elements. Generally the size of the triangular elements is some fraction of the size of the 
control volumes used for the fluid flow and as the flow evolves, the unstructured two-dimensional grid is 
deformed, stretched and compressed. Thus, it is usually necessary to update the grid once in a while to 
maintain the resolution. This updating, where we need to add and delete points and elements and 
sometimes change the topology is generally considered the main challenges with front tracking. In the 
next lecture we will focus on two-dimensional flow where the front is simply a one-dimensional curve and 
adding and deleting points is relatively simple.

DNS of Multiphase Flows

Implementation of front tracking methods require several 
steps. The major ones are:
The front is moved by the fluid velocities, interpolated from 
the fixed grid 
The marker function is constructed from the front

The front is used to compute surface tension which is then 
smoothed onto the fixed grid

All these operations can be done in a number of different 
ways. We will introduce one relatively simple approach in the 
next few lectures. The implementation focuses on two-
dimensional flows, which are considerably simpler than fully 
three-dimensional ones. However, the underlying ideas 
remain the same

28. Implementation of front tracking methods requires several steps. We usually move the front with the 
fluid velocities, which must be interpolated from the fixed grid used to solve the Navier-Stokes 
equations; then we need to construct a marker function from the location of the front; and for immiscible 
fluids we need to find the surface tension from the front geometry and add it to the discrete Navier-
Stokes equations on the fixed grid. We can do these operations in several different ways and in the next 
lectures we will work through one relatively simple approach. Although our implementation focuses on 
two-dimensional flows, which are considerably simpler than fully three-dimensional ones, the underlying 
ideas remain the same.

DNS of Multiphase Flows

Several other methods have been developed to 
improve the performance of those described 
here, including hybrid methods, such as Particle 
Level Set and VOF-LS, as well as methods that 
capture the interface more sharply, such as the 
Ghost Fluid Method and the Immersed Interface 
Method. 

Similar approach has also been used to capture 
rigid and elastic boundaries, both moving and 
stationary.

29. Hybrid methods, such as Particle Level Set and combined Volume of Fluid Level Set methods, as well 
as methods that capture the interface more sharply, such as the Ghost Fluid Method and the Immersed 
Interface Method. Considerable effort has also been devoted to the development of similar approaches 
to capture rigid and elastic boundaries, both moving and stationary. Of the elementary methods 
described in this lecture, front tracking appears to be the most robust and accurate approach and while 
work on both level set and volume of fluid methods continues, the front tracking approach described 
here is still often used in more or less its original form. In the next lectures we will describe a simple 
implementation in sufficient detail so that we can code it up.


