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1. Here we continue to develop a simple solver for flows with variable density.
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Corrected
Velocities

2. Once the predicted velocities have been found, we need to look at how to evaluate the corrected

velocities.

DNS of Multiphase Flows

Discretization in space—Corrector step
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3. The incompressible velocity at the new time, u n+1, is the predicted velocity, u star, minus delta t over
rho times the pressure gradient needed to make the new velocity divergence free. For the horizontal
velocity at i+1/2,j we use the difference between the pressures on the right boundary of the velocity
control volume and the pressure on the left boundary. These are given directly as the pressures at the
center of the pressure control volume to the right, p i+1,j and the pressure at the center of the of the
pressure control volume to the left, p i,j. The density is needed at the center of the velocity control
volume and, since it is assumed to be known at the center of the pressure control volume, we interpolate
by taking the average. Similarly, the vertical velocity at |,j+1/2 is updated by adding the difference

between the pressures at |,j+1 and |,j, divided by the averages of the densities at the same points.
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The pressure
equation

4. In writing the equation for the correction velocities we assumed that the pressures are known. This is,

of course, not the case and before we do the update, we need to find the pressure.
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To correct the predicted velocity, we need the pressure. The
pressure equation is derived by substituting the expression
for the correction velocities into the mass conservation
equation. Once the pressure has been found, we can use it
to correct the predicted velocity.

Schematically
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The detailed equations are derived by examining the discrete
approximations directly:
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5. Although the primitive, or the velocity-pressure, form of the Navier Stokes equations does not have a
separate equation for the pressure, we can derive it by combining the incompressibility conditions with
the momentum equations. When we use the projection method for the time integration and split the
momentum equation into a prediction and a correction step, the pressure appears in the correction step.
We don’t know the velocity at n+1, but the incompressibility equation says that its divergence should be
zero. Thus, taking the divergence of the correction equation eliminates the new unknown velocity and
leaves us with a relationship between the pressure and the predicted velocity, which we know. We
generally derive the pressure equation by working directly with the discrete approximations and that is

what we will go through that in the next few slides.

DNS of Multiphase Flows

To derive an equation for the pressure, start with the
conservation of mass equation
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6. To derive an equation for the pressure at point i,j, we use the incompressibility condition for a control
volume around that point, written at the top of the slide, which states that the inflow and the outflow
must be equal. The correction equations for the normal velocity on each side, written below, relates the
new normal velocity to the predicted velocity and the differences in pressure at i,j and the outside
pressure. Thus, u n+1 at i+1/2,j is equal to the predicted velocity at the same point plus the differences
between the pressure at i+1,j and i,j, times delta t, divided by delta x and the density at i,j. The other

velocities are given by similar expressions.



DNS of Multiphase Flows 7. Substituting the expressions for the correction velocities on each side of the control volume into the

To derive an equation for the pressure, start with the incompressibility equation eliminates the unknown velocities at the new time level and gives us an

conservation of mass equation equation for the pressures.
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DNS of Multiphase Flows 8. The result is a set of linear equations that relate the pressure at each point to the pressure at the

neighboring points and the predicted velocities, which are known. Here we have rearranged the

Rearranging, results in the Pressure Equation: . ) . . .
equation slightly so the known quantities, namely the predicted velocities u* and v* appear on the RHS.
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DNS of Multiphase Flows 9. We have one pressure equation for each grid point and since they link the pressure points to the

. ] . neighboring pressure points we need to solve a system of linear equations. There are many, many ways
The Pressure Equation is a system of linear equations, one for

each grid point and can be solved in many ways. Here we will to do so and, indeed, solving linear equations is a very large and very advanced field. Here, however, we

use a simple Successive Over-Relaxation (SOR) method. . . . . . . . .
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Once pijis on the left hand side, we divide by the coefficient in
front. We denote the iteration number by a superscript o and
assume that the values at points i-1,j and i,/-1 have already been
updated. As is standard in SOR, we add the current iterate
multiplied by B to the last value of pi;, weighted by (1-) to
accelerate the convergence. Here 3 must be selected so that
1<f <2. B =1.5is usually a good stating point. The final equation
is:
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The iterations are repeated until the solution does not change

10-1. At each step the new densities, rho n+1 at each grid points are known, so we can compute the
constant multiplying p i,j and divide by it. Putting everything else on the left hand side gives us an
equation for p i,j. The problem is, of course, that the pressures at i+1,j and so on are unknown. Thus, we
solve the equation by iteration where we start by guessing the pressure. Then we use our equation to
compute new pressures that are then used to compute the pressure again and so on, until the pressures
do not change. Fortunately this process generally converges, although we may need a large number of
iterations. Since the pressure values converge smoothly, and it is clear what the trend are, we can
sometimes accelerate the process by extrapolating the new value based on how different it is from the
old value. This is easily done by multiplying the new value with a constant that is larger than one and
adding the old value multiplied by one minus this constant. Here we denote the constant by beta and

note that it can be shown that beta must be smaller than two for the results to converge.
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Once p;;is on the left hand side, we divide by the coefficient in
front. We denote the iteration number by a superscript o and
assume that the values at points i-1,j and i,j-1 have already been
updated. As is standard in SOR, we add the current iterate
multiplied by  to the last value of p;;, weighted by (1-) to
accelerate the convergence. Here 3 must be selected so that

1< <2. B =1.5is usually a good stating point. The final equation
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The iterations are repeated until the solution does not change

10-2. Thus beta must be larger than one and smaller than 2 so beta equal to 1.5 is usually a reasonable
start. Larger beta gives faster convergence when it works but larger beta can also cause the iteration to

divergence.
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First we compute the constant and the source term
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for i=2:nx+1,for j=2:ny+1
tmp1(i,j)= (0.5/dt)*( (ut(i,j)-ut(i-1,j))/dx+(vi(i,j)-vt(i,j-1))/dy );
tmp2(i,j)=1.0/( (1./dxA2)*(1./(rt(i+1,j)+rt(i,j))+...
1./(rt(i-1,))+rt(ij)) )+...
(1./dyA2)* (1./(rt(i,j+1)+1t(i,j)) +...
1At (ioj-1)+rt(i0) ) );
end,end

11. During the iteration we re-compute the equation over and over again as the pressures change.
However, the densities and the source term do not change so it makes sense to compute the coefficient
in front of p i,j (highlighted by yellow) and the source term (purple) at the beginning and store those.
Thus, we put the following code snippet before the pressure iteration. Although we do not need to
compute the coefficient and the source, for each iteration, we generally have to compute them again for
each time step since both the densities and the predicted velocities change as the solution evolves in
time. Notice that we only solve for the pressures inside the computational domain so i goes from 2 to

nx+1 and j goes from 2 to ny+1.
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12. Once the coefficients and the source has been computed, we iterate to find the pressure. Notice that
we only need one pressure array since the new values are used as soon as they have been computed. To
stop the iteration we simply compare the new pressure with the old one and if the change is sufficiently
small we declare victory and accept the pressure values as the correct answer. This is not a particularly
sophisticated way to evaluate when the iteration has converged but it is simple and works sufficiently

well for our purpose.

DNS of Multiphase Flows

Correct the
velocity

13. Once the pressures have been found, we can correct the predicted velocities by adding the discrete

pressure gradient.
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After the pressure has been found, we can add the pressure
gradient to make the velocity field incompressible:
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This completes the updating of the velocity
field for the interior points, for the first order
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time integration that we are using here

14. The discrete equations for the corrected velocities are the same that we found earlier and used in the
derivation of the pressure equation. The velocity at the new time step is the predicted velocity
component minus delta t divided by the density at time n+1, interpolated to the velocity point, times a
discrete approximation to the pressure, found by using the pressure at the boundaries of the velocity
control volumes. Below the equation for each component we include code snippets for the update. As
we did when finding the predicted velocities we do the update in separate loops, since the range of grid

points is slightly different for each components, as we explain next.
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The Domain
and
the Grid

15. To resolve the flow in a given domain we must divide the domain into the control volumes introduced
above. In general, this can be a time-consuming and complex task, if the shape of the domain is

complex.
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Staggered Grid ‘F ‘ ‘ ‘

Thefullgridand |, .
the location of the
pressure and the
velocity
components
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16-1. Here, however, we will examine the flow in a simple rectangular cavity, bounded by four walls, with
at least one of the walls moving, to generate a flow. The size of the domain is Lx in the horizontal
direction and Ly in the vertical one. The boundaries of the domain are shown by the read rectangle. We
start by putting pressure control volumes or cells into the domain, starting at the lower left corner. We
will assume that we need Nx volumes in the horizontal direction and Ny in the vertical direction. To
simplify the implementation of our boundary conditions we will also put one row of pressure control
volumes outside the domain. Thus, we will use Nx+2 control volumes in the horizontal direction and
Ny+2 control volumes in the vertical direction. The control volumes outside the domain are generally
referred to as ghost cells or ghost control volumes. Once we have decided where the pressure control
volumes go, the velocity control volumes are set by shifting the pressure volumes half delta x to the right

for the u velocity and half delta y up for the v-velocity.
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Staggered Grid r
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velocity
components

Array Dimension:

+
<‘,

p(l:nz+2,1:ny+2)

w(l:nz+1,1:ny+2)
v(l:nz+2,1:ny+1) + +’4‘>++

+
-
2

+

16-2. Notice that the first cell for the u velocity is now centered on the left boundary and that the ghost
cell for the pressure for the left boundary is shifted to the right and is not needed. In the vertical
direction the control volume for the u-velocity are not shifted with respect to the pressure cells. Thus, we
use Nx+1 times Ny+2 cells for the u-velocity. Similarly, the first cell for the v-velocity is centered on the
bottom boundary and the last shifted pressure cell is not needed. Therefore, we use Nx+2 times Ny+1

cells for the v-velocity.
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Staggered Grid

The full grid and
the location of the
pressure and the
velocity
components
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17-1. We start numbering the control volumes in the lower left hand corner, identifying the first pressure
control volume, which is a ghost control volume outside the domain by 1,1. Since this cell does not
border any interior velocity cell it is generally not needed. The ghost control volumes at the bottom are
1,2, 1,3 and on and those on the left are 2,1, 3,1 and so on. The first pressure control volume inside the
domain is 2,2. For the u-velocity the control volumes have been shifted to the right so the first column on
the left contains the normal velocities at the left boundary and are assumed to be given. The first row on
the bottom are the ghost cells that are used to enforce the given tangent velocity at the bottom
boundary. The first cell, 1,1 is located below the vertical left boundary and, since the velocities on the

boundary are given, is usually not used. Similarly, the v-velocity control volumes have been shifted up so

Pis 3 S P the first row on the bottom contains the normal velocities at the bottom boundary that are assumed to
| | be given.
DNS of Multiphase Flows 17-2. The first column on the left contains the ghost cells that are used to enforce the given tangent
velocity at the left boundary. The first cell, 1,1 is located to the left of the bottom horizontal boundary

Staggered Grid . , and, since the velocities on the boundary are given, is usually not used.
The full grid and o B E b = | 5
the location of the = = B o
pressure and the I - |
velocity : !
components
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DNS of Multiphase Flows 18. In the upper right side corner the last cell is the pressure ghost cell number Nx+2, NY+2, and since it

does not border any interior velocity cell it is generally not needed. The pressure cells outside the
Staggered Grid I . boundary on the top and the bottom are the ghost cells for the pressure. The last row of u-velocities, on
The full grid and E E the top with i=Nx+1, are on the boundary and are given and the u-velocity in the ghost cells on the
the location of the Pioimsz | R Proim2 | 3l P22 . L - " . . .
pressure and the right, with j=Ny+2, are used to enforce the tangent velocities. Similarly, the last row of v-velocities, with
velocity | — et el j=Ny+1, are on the top boundary and are given and the v-velocity in the ghost cells on the right, with
components z S
Pratmer & Pusimer B Parmye i=Nx+2 are used to enforce the tangent velocities.
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DNS of Multiphase Flows 19. The variables to be updated are generally those inside the domain. Since the numbers of pressure

A - ‘ and velocity control volumes are different, we need to be careful to ensure that the indices take on the

[ 1

Most operations focus on W F - . . . . .
the interior points. For those |-~ Lyt y iy correct values. The quantities on the boundary, or in the ghost points, are either given, or treated in a
the loops are: do + Lol special way. For the horizontal velocity we have i running over 2 to Nx and j running over 2 to Ny+1 and
P —— By - ++ o for the vertical velocities i runs over 2 to Nx+1 and j over 2 to Ny. For the pressure, i takes on the values
RUNNING OVER U VELOCITY m [l el -l el ;. ;
end,end == === q/ 2 to Nx+1 and j takes on 2 to Ny+1.
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for i=2:nx+1,for j=2:ny+1 pLino 42,10y + ()
RUNNING OVER PRESSURE POINTS u(linz+1,1:ny+2)
end,end v(l:nz+2,1:ny+1)




