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1. We have now derived numerical approximations that allow us to update the flow field in time, in the 
interior of the domain. Before we can do a specific problem we need to include boundary conditions. 

DNS of Multiphase Flows

The boundary 
conditions

2. The boundary conditions can vary from problem to problem but here we will focus on walls with given 
tangential and normal velocities. We often take these velocities to be zero over most of the boundary, 
representing no-slip rigid walls.

DNS of Multiphase Flows

Boundary Conditions for the velocity:

Here we take the domain to be a rectangle with 
prescribed velocities at all boundaries.

The boundaries coincide with the edges of the 
pressure control volumes so the normal velocity is 
given where it is needed.

The implementation of the tangent velocity is slightly 
more complex and we will use “ghost” points outside 
the domain to impose the correct tangential velocity

3. In our case the boundaries are straight lines, connected at the corners to enclose a rectangular domain 
with no in- or out-flow. Thus, the normal velocity is zero for all the boundaries, meaning that the u-
velocities are zero on the left and right boundary and the v-velocities are zero at the top and bottom. 
The tangent boundaries are, however, allowed to move and induce a flow in the domain. Thus, we 
specify the tangent velocity at each boundary, setting one or more to a non-zero value. The tangent 
boundary velocity is specified using the ghost points.



DNS of Multiphase Flows

Velocity of wall is given, uwall (no-slip) 

Tangent velocity Boundary Conditions

Interpolate linearly

Solve for the “ghost” velocity

If the wall velocity is zero:
                then the ghost 
velocity is a reflection of 
the interior velocity   
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0.6 The Computational Domain

0.7 Boundary Conditions
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0.6 The Computational Domain

0.7 Boundary Conditions

u

wall

=

u

i,1 + u

i,2

2

u

i,1 = 2 u

wall

� u

i,2

u

wall

= 00.8. NUMERICAL ALGORITHM 7

u

i,1 = �u

i,2

u

n+1
i+1/2,j � U

b,j

�x

+

v

n+1
i,j+1/2 � v

n+1
i,j�1/2

�y

= 0

1

�x

2

 

p

i+1,j � p

i,j

⇢

n

i+1,j + ⇢

n

i,j

!

+

1

�y

2

 

p

i,j+1 � p

i,j

⇢

n

i,j+1 + ⇢

n

i,j

� p

i,j

� p

i,j�1

⇢

n

i,j

+ ⇢

n

i,j�1

!

=

1

2�t

⇣

u

⇤
i+1/2,j � U

b,j

�x

+

v

⇤
i,j+1/2 � v

⇤
i,j�1/2

�y

⌘

0.8 Numerical Algorithm

µ�t

⇢h

2
 1

4

(u · u)⇢�t

µ

 2

0.9 Advecting the Density: Centered Di↵erences

with Di↵usion

@⇢

@t

= �u ·r⇢

@⇢

@t

= �r · (⇢u)

@⇢

@t

= �r · (⇢u) + µ0r2
⇢

⇢

n+1
i,j

= ⇢

n

i,j

� �t

�x

⇣

u

i+1/2,j
⇢

i+1,j + ⇢

i,j

2

� u

i�1/2,j
⇢

i�1,j + ⇢

i,j

2

⌘

��t

�y

⇣

v

i,j+1/2
⇢

i,j+1 + ⇢

i,j

2

� u

i,j�1/2
⇢

i,j�1 + ⇢

i,j

2

⌘

+

µ0�t

�x

2
(⇢

i+1,j � 2⇢

i,j

+ ⇢

i�1,j) +
µ0�t

�y

2
(⇢

i,j+1 � 2⇢

i,j

+ ⇢

i,j�1)

6

v

n+1
i,j�1/2 = v

⇤
i,j�1/2 �

�t

1
2 (⇢

n

i,j

+ ⇢

n

i,j�1)

p

i,j

� p

i,j�1

�y

�y(u

n+1
i+1/2,j � u

n+1
i�1/2,j) +�x(v

n+1
i,j+1/2 � v

n+1
i,j�1/2) = 0

1

�x

2

 

p

i+1,j � p

i,j

⇢

n

i+1,j + ⇢

n

i,j

� p

i,j

� p

i�1,j

⇢

n

i,j

+ ⇢

n

i�1,j

!

+

1

�y

2

 

p

i,j+1 � p

i,j

⇢

n

i,j+1 + ⇢

n

i,j

� p

i,j

� p

i,j�1

⇢

n

i,j

+ ⇢

n

i,j�1

!

=

1

2�t

⇣

u

⇤
i+1/2,j � u

⇤
i�1/2,j

�x

+

v

⇤
i,j+1/2 � v

⇤
i,j�1/2

�y

⌘

�
"

1

�x

2

⇣

1

⇢

n

i+1,j + ⇢

n

i,j

+

1

⇢

n

i,j

+ ⇢

n

i�1,j

⌘

+

1

�y

2

⇣

1

⇢

n

i,j+1 + ⇢

n

i,j

+

1

⇢

n

i,j

+ ⇢

n

i,j�1

⌘

#

p

i,j

1

�x

2

⇣

p

i+1,j

⇢

n

i+1,j + ⇢

n

i,j

+

p

i�1,j

⇢

n

i,j

+ ⇢

n

i�1,j

⌘

+

1

�y

2

⇣

p

i,j+1

⇢

n

i,j+1 + ⇢

n

i,j

+

p

i,j�1

⇢

n

i,j

+ ⇢

n

i,j�1

⌘

=

1

2�t

⇣

u

⇤
i+1/2,j � u

⇤
i�1/2,j

�x

+

v

⇤
i,j+1/2 � v

⇤
i,j�1/2

�y

⌘

p

↵+1
i,j

=

�

"

1

�x

2

⇣

1

⇢

n

i+1,j + ⇢

n

i,j

+

1

⇢

n

i,j

+ ⇢

n

i�1,j

⌘

+

1

�y

2

⇣

1

⇢

n

i,j+1 + ⇢

n

i,j

+

1

⇢

n

i,j

+ ⇢

n

i,j�1

⌘

#�1

"

1

�x

2

⇣

p

↵

i+1,j

⇢

n

i+1,j + ⇢

n

i,j

+

p

↵+1
i�1,j

⇢

n

i,j

+ ⇢

n

i�1,j

⌘

+

1

�y

2

⇣

p

↵

i,j+1

⇢

n

i,j+1 + ⇢

n

i,j

+

p

↵+1
i,j�1

⇢

n

i,j

+ ⇢

n

i,j�1

⌘

� 1

2�t

⇣

u

⇤
i+1/2,j � u

⇤
i�1/2,j

�x

+

v

⇤
i,j+1/2 � v

⇤
i,j�1/2

�y

⌘

#

+ (1� �)p

↵

i,j

0.6 The Computational Domain

0.7 Boundary Conditions

u

wall

=

u

i,1 + u

i,2

2

u

i,1 = 2 u

wall

� u

i,2

u

wall

= 0

pi,j+1! pi+1,j+1! pnx+1,j+1! pnx+2,j+1!pi-1,j+1!p2,j+1!p1,j+1!

pi,j! pi+1,j! pnx+1,j! pnx+2,j!pi-1,j!p2,j!p1,j!

pi,j-1! pi+1,j-1! pnx+1,j-1! pnx+2,j-1!pi-1,j-1!p2,j-1!p1,j-1!

pi,2! pi+1,2! pnx+1,2! pnx+2,2!pi-1,2!p2,2!p1,2!

pi,1! pi+1,1! pnx+1,1! pnx+2.1!pi-1,1!p2,1!p1,1!

vi,j!

vi,j-1! vi+1,j-1! vnx+1,j-1! vnx+2,j-1!vi-1,j-1!v2,j-1!v1,j-1!

vi,2! vi+1,2! vnx+1,2! vnx+2,2!vi-1,2!v2,2!v1,2!

vi,1! vi+1,1! vnx+1,1! vnx+2,1!vi-1,1!v2,1!v1,1!

u i
,j!

vi,j! vi+1,j! vnx+1,j! vnx+2,j!vi-1,j!v2,j!v1,j!

vi,j+1! vi+1,j+1! vnx+1,j+1! vnx+2,j+1!vi-1,j+1!v2,j+1!v1,j+1!

u i
-1

,j!

u 2
,j!

u 1
,j!

u i
+

1,
j!

u n
x+

1,
j!

u i
,j-

1!

u i
-1

,j,
-1!

u 2
,j-

1!

u 1
,j-

1!

u i
+

1,
-1

j!

u n
x+

1,
j-1
!

u i
,2
!

u i
-1

,2
!

u 2
,2
!

u 1
,2
!

u i
+

12
!

u n
x+

1,
2!

u i
,1!

u i
-1

,1!

u 2
,1
!

u 1
,1!

u i
+

1,
1!

u n
x+

1,
1!

pi,ny+1! pi+1,ny+1! pnx+1,ny+1! pnx+2,ny+1!pi-1,ny+1!p2,ny+1!p1,ny+1!

pi,ny+2! pi+1,ny+2! pnx+1,ny+2! pnx+2,ny+2!pi-1,ny+2!p2,ny+2!p1,ny+2!

vi,ny+1! vi+1,ny+1! vnx+1,ny+1! vnx+2,ny+1!vi-1,ny+1!v2,ny+1!v1,ny+1!

u i
,n

y+
1!

u i
-1

,n
y+

1!

u 2
,n

y+
1!

u 1
,n

y+
1!

u i
+

1,
ny

+
1!

u n
x+

1,
ny

+
1!

u i
,n

y+
2!

u i
-1

,n
y+

2!

u 2
,n

y+
2!

u 1
,n

y+
2!

u i
+

1,
ny

+
2!

u n
x+

1,
ny

+
2!

u i
,j+

1!

u i
-1

,j+
1!

u 2
,j+

1!

u 1
,j+

1!

u i
+

1,
j+

1!

u n
x+

1,
j+

1!

Lx, Nx!

Ly!
Ny!

  % tangential velocity at boundaries
    u(1:nx+1,1)=2*usouth-u(1:nx+1,2);
    u(1:nx+1,ny+2)=2*unorth-u(1:nx+1,ny+1);
    v(1,1:ny+1)=2*vwest-v(2,1:ny+1);
    v(nx+2,1:ny+1)=2*veast-v(nx+1,1:ny+1);

4. When we use a staggered grid, the normal velocities are specified directly on the boundary. The 
tangent velocities are, however, not. To enforce the correct tangent boundary conditions we need to use 
the ghost point and set the tangent velocity at the ghost points to the correct value. The velocity at the 
wall can be found by linear interpolation, assuming that the ghost velocity is known. Since the boundary 
is midway between the center of the ghost cell and the first cell inside the domain it is simply the 
average. The unknown velocity is, however, the ghost velocity, while the wall velocity is known, so we 
solve for it and find that the ghost velocity is equal to twice the wall velocity minus the velocity in the first 
interior cell. Obviously, if the wall velocity is zero, the ghost velocity is simply the negative of the first 
interior velocity. Thus, once the velocities in the interior have been found, we set the ghost velocity to 
allow us to take the next time step. Here we have assumed that we are working with the bottom 
boundary, obviously the derivation for the other boundaries is essentially the same.
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pi,j! pi+1,j!
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vi+1,j-1/2!
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fig4


Ub,j = ui-1/2,j!

Boundary Conditions for the 
pressure. Use the normal 
velocity given at the 
boundary when we 
substitute the correction 
velocity into the mass 
conservation equation:

The pressure equation at the boundary is therefore:
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Approximating the integral of the viscous fluxes around the boundaries of the velocity control volumes (equa-
tion ??) by the value at the midpoint of each edge times the length of the edge results in:

(D
x

)
n

i+1/2,j =

1

�x�y

( 

2
⇣

µ
@u

@x

⌘

i+1,j
� 2
⇣

µ
@u

@x

⌘

i,j

!

�y

+

 

µ
⇣@u

@y
+

@v

@x

⌘

i+1/2,j+1/2
� µ

⇣@u

@y
+

@v

@x

⌘

i+1/2,j�1/2

!

�x

)

(4)

5-1. In the problem that we will do at the end of this lecture we will be assuming zero flow through the 
boundary, or zero normal velocity. However, zero normal velocity is a special case of a given normal 
velocity and since we can allow for arbitrary normal velocity without any additional complexity, we will do 
so here. Consider the control volume in the figure, where there is a given normal inflow Ub, through the 
boundary on the left. Since the velocity through the boundary is known, we can modify the 
incompressibility conditions including Ub. The pressure equation is then derived in the usual way by 
replacing the unknown velocities in the incompressibility conditions with the expression for the corrected 
velocity, stating that the corrected, or final, velocities are the predicted velocities plus the discrete 
pressure gradient. However, since Ub is known, there is no need to replace it and the resulting pressure 
equation therefore does not include the pressure to the left of P_i,j, and in the divergence of the 
predicted velocities we replace the predicted velocity at i-1/2,j by U_b.
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fig4


Ub,j = ui-1/2,j!

Boundary Conditions for the 
pressure. Use the normal 
velocity given at the 
boundary when we 
substitute the correction 
velocity into the mass 
conservation equation:

The pressure equation at the boundary is therefore:
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5-2. This is, actually, a rather remarkable result since we do not have to worry about the boundary 
conditions for the pressure at all. While the pressure boundary condition deserve further discussion, we 
will not do so here, in the interest of moving on with the development of our code. 
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A simple way to implement the pressure boundary 
conditions is to set the value of the density in the ghost cell 
to a large value and the velocity to the normal velocity

 rt=r; lrg=1000;
    rt(1:nx+2,1)=lrg; rt(1:nx+2,ny+2)=lrg;
    rt(1,1:ny+2)=lrg; rt(nx+2,1:ny+2)=lrg;
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0.4 The Pressure Equation
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0.5 The Computational Domain

0.6 Boundary Conditions
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6. The pressure boundary conditions can be implemented in many ways and the most rigorous way is to 
rewrite the equations for the pressure points next to the boundary, setting the appropriate terms to zero. 
Doing this does not require any ghost points. Here we do, however, use a simpler approach and set the 
density in the ghost cells equal to a large value. Since we divide by the densities, this would results in 
these terms being zero if the density was truly infinitely high. While we do not use an infinitely high value 
for the density, we can nevertheless make the blue terms very small by a sufficiently high value. The 
predicted normal velocity at the wall, v at i,j-1/2 or the purple term, in our example, also needs to be set 
to the correct inflow velocity.
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Advecting the 
Density

7. For methods with sharp interfaces between fluids of different densities the advection of the sharp 
interface is the major challenge. We will introduce a method to track the interface in the next lecture, but 
here we simply assume that the density is updated using the equation stating that density of a material 
particle is constant.
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Advecting the Density: Centered Differences with Diffusion 
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8. The equation stating that the density of a material point is constant says that the time derivative of the 
density plus the velocity times the density gradient is equal to zero. This equation can be rewritten 
slightly using that the flow is incompressible to pull the velocity under the divergence. While there are a 
number of schemes that allow us to write down a stable discrete equation for the advection equation, 
the simple forwards in time, centered in space scheme used for the Navier-Stokes equations is 
unconditionally unstable. To be able to use it we add a diffusive term to the equation, taking the 
diffusion coefficient equal to the fluid viscosity, so that the allowable time step is the same. The new 
density at the pressure points is therefore the old density minus delta t times the outflow of mass 
through the right and the top boundaries minus the inflow through the left and the bottom boundary, 
plus the viscosity times delta t times a discrete approximation of the second derivative. We note again 
that this is a temporary way to update the density, so that we can code up the fluid solver.
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Discrete version

%=====ADVECT DENSITY using centered difference plus diffusion ========
    ro=r;
    for i=2:nx+1,for j=2:ny+1
          r(i,j)=ro(i,j)-(0.5*dt/dx)*(u(i,j)*(ro(i+1,j)+ro(i,j))-u(i-1,j)*(ro(i-1,j)+ro(i,j)) )...
                           -(0.5*dt/dy)*(v(i,j)*(ro(i,j+1)+ro(i,j))-v(i,j-1)*(ro(i,j-1)+ro(i,j)) )...
                  +(m0*dt/dx/dx)*(ro(i+1,j)-2.0*ro(i,j)+ro(i-1,j))...
                  +(m0*dt/dy/dy)*(ro(i,j+1)-2.0*ro(i,j)+ro(i,j-1));
   end,end
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9. The code snippet for updating the density is a straightforward coding up of the discretization on the 
last slide. We loop over all the interior point, with i going from 2 to Nx+1 and j from 2 to Ny+1, 
computing the right hand side using the old values of the density.

DNS of Multiphase Flows

The full method

10. We are now ready to pull all the pieces together and write a complete flow solver capable of 
simulating flow driven by differences in density.

DNS of Multiphase Flows

2. Find a temporary velocity using the advection and the 
diffusion terms only:

3. Find the pressure needed to make the velocity 
field incompressible

4. Correct the velocity by adding the pressure gradient:

1. Set velocity at ghost points and update the marker function 
to find new density and viscosity
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11. First we review the steps, or the solution strategy. We start setting the velocity at the ghost points 
and finding the density at the new step, using the simple and temporary advection-diffusion equation 
approach just described. Then we find the predicted velocity. We then solve the pressure equation, and 
once we have the pressure, we can correct the new velocity field. Once we have the new velocity field 
we are ready to take the next time step.
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    Advect the density
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    Solve for pressure using SOR

    Find the projected velocity 
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end

Advect density

2

r
h

P =
1

V

I

S

pn ds F =
1

V

Z

V

f dv G =
1

V

Z

V

⇢g dv

D =
1

V

I

S

µ
�

ru+ (ru)T
�

· n ds r
h

· u =
1

V

I

S

u · nds u =
1

V

Z

V

udv

- —————————- ————————— END ITALICS ————————— —————————

0.2 Integration in Time

Approximate M

n

h

= ⇢n
h

u

n

h

and M

n+1
h

= ⇢n+1
h

u

n+1
h

.

⇢n+1
h

u

n+1
h

� ⇢n
h

u

n

h

�t
+A

n

h

= �r
h

p
h

+ g

n

h

+D

n

h

+ f

n

h

⇢n+1
u

⇤
h

� ⇢nun

h

�t
= �A

n

h

+ g

h

+D

n

h

+ f

n

h

⇢n+1
h

u

n+1
h

� ⇢n+1
h

u

⇤
h

�t
= �r

h

p
h

r
h

· un+1
h

= 0

r
h

· un+1
h

�r
h

· u⇤
h

�t
= �r

h

·
 

1

⇢n+1
h

rp
h

!

u

⇤
h

= u

n

h

+�t
⇣

�A

n

h

+
1

⇢n+1
h

g

h

+
1

⇢n+1
h

D

n

h

⌘

r
h

·
 

1

⇢n+1
h

r
h

p
h

!

=
1

�t
r

h

· u⇤
h

u

n+1
h

= u

⇤
h

��t
r

h

p
h

⇢n+1
h

find ⇢
h

0.3 Spatial Discretization

0.3.1 incompressibility

1

V

I

S

u · nds = 0

1

�x�y

⇣

�y(un+1
i+1/2,j � un+1

i�1/2,j) +�x(vn+1
i,j+1/2 � vn+1

i,j�1/2)
⌘

= 0

0.3.2 time derivative

Z

V

⇢udv = ⇢
i+1/2,jui+1/2,j�x�y =

1

2
(⇢

i,j

+ ⇢
i+1,j)u

i+1/2,j�x�y

Z

V

⇢vdv = ⇢
i,j+1/2vi,j+1/2�x�y =

1

2
(⇢

i,j

+ ⇢
i,j+1)u

i,j+1/2�x�y

1

V

@

@t

Z

V

⇢udv =
1

2
(⇢n+1

i,j

+ ⇢n+1
i+1,j)u

n+1
i+1/2,j �

1

2
(⇢n

i,j

+ ⇢n
i+1,j)u

n

i+1/2,j

1

V

@

@t

Z

V

⇢vdv =
1

2
(⇢n+1

i,j

+ ⇢n+1
i,j+1)u

n+1
i,j+1/2 �

1

2
(⇢n

i,j

+ ⇢n
i,j+1)u

n

i,j+1/2

2

r
h

P =
1

V

I

S

pn ds F =
1

V

Z

V

f dv G =
1

V

Z

V

⇢g dv

D =
1

V

I

S

µ
�

ru+ (ru)T
�

· n ds r
h

· u =
1

V

I

S

u · nds u =
1

V

Z

V

udv

- —————————- ————————— END ITALICS ————————— —————————

0.2 Integration in Time

Approximate M

n

h

= ⇢n
h

u

n

h

and M

n+1
h

= ⇢n+1
h

u

n+1
h

.

⇢n+1
h

u

n+1
h

� ⇢n
h

u

n

h

�t
+A

n

h

= �r
h

p
h

+ g

n

h

+D

n

h

+ f

n

h

⇢n+1
u

⇤
h

� ⇢nun

h

�t
= �A

n

h

+ g

h

+D

n

h

+ f

n

h

⇢n+1
h

u

n+1
h

� ⇢n+1
h

u

⇤
h

�t
= �r

h

p
h

r
h

· un+1
h

= 0

r
h

· un+1
h

�r
h

· u⇤
h

�t
= �r

h

·
 

1

⇢n+1
h

rp
h

!

u

⇤
h

= u

n

h

+�t
⇣

�A

n

h

+
1

⇢n+1
h

g

h

+
1

⇢n+1
h

D

n

h

⌘

r
h

·
 

1

⇢n+1
h

r
h

p
h

!

=
1

�t
r

h

· u⇤
h

u

n+1
h

= u

⇤
h

��t
r

h

p
h

⇢n+1
h

find ⇢
h

0.3 Spatial Discretization

0.3.1 incompressibility

1

V

I

S

u · nds = 0

1

�x�y

⇣

�y(un+1
i+1/2,j � un+1

i�1/2,j) +�x(vn+1
i,j+1/2 � vn+1

i,j�1/2)
⌘

= 0

0.3.2 time derivative

Z

V

⇢udv = ⇢
i+1/2,jui+1/2,j�x�y =

1

2
(⇢

i,j

+ ⇢
i+1,j)u

i+1/2,j�x�y

Z

V

⇢vdv = ⇢
i,j+1/2vi,j+1/2�x�y =

1

2
(⇢

i,j

+ ⇢
i,j+1)u

i,j+1/2�x�y

1

V

@

@t

Z

V

⇢udv =
1

2
(⇢n+1

i,j

+ ⇢n+1
i+1,j)u

n+1
i+1/2,j �

1

2
(⇢n

i,j

+ ⇢n
i+1,j)u

n

i+1/2,j

1

V

@

@t

Z

V

⇢vdv =
1

2
(⇢n+1

i,j

+ ⇢n+1
i,j+1)u

n+1
i,j+1/2 �

1

2
(⇢n

i,j

+ ⇢n
i,j+1)u

n

i,j+1/2

2

@

@t

Z

V

⇢udv +

I

S

⇢uu · nds = �
I

S

pnds+

Z

V

⇢gdv +

I

S

µ
�

ru+ (ru)T
�

· nds+
Z

V

f dv

I

S

u · nds = 0 M =
1

V

Z

V

⇢udv A =
1

V

I

S

⇢u(u · n)ds

r
h

P =
1

V

I

S

pn ds F =
1

V

Z

V

f dv G =
1

V

Z

V

⇢g dv

D =
1

V

I

S

µ
�

ru+ (ru)T
�

· n ds r
h

· u =
1

V

I

S

u · nds u =
1

V

Z

V

udv

- —————————- ————————— END ITALICS ————————— —————————

0.2 Integration in Time

Approximate M

n

h

= ⇢n
h

u

n

h

and M

n+1
h

= ⇢n+1
h

u

n+1
h

.

@

@t
M

h

⇡
M

n+1
h

�M

n

h

�t
=

⇢n+1
h

u

n+1
h

� ⇢n
h

u

n

h

�t

⇢n+1
h

u

n+1
h

� ⇢n
h

u

n

h

�t
+A

n

h

= �r
h

p
h

+ g

n

h

+D

n

h

+ f

n

h

⇢n+1
u

⇤
h

� ⇢nun

h

�t
= �A

n

h

+ g

h

+D

n

h

+ f

n

h

⇢n+1
h

u

n+1
h

� ⇢n+1
h

u

⇤
h

�t
= �r

h

p
h

r
h

· un+1
h

= 0

r
h

· un+1
h

�r
h

· u⇤
h

�t
= �r

h

·
 

1

⇢n+1
h

r
h

p
h

!

u

⇤
h

=
1

⇢n+1
h

 

⇢n
h

u

n

h

+�t
�

�A

n

h

+ g

h

+D

n

h

�

!

r
h

·
 

1

⇢n+1
h

r
h

p
h

!

=
1

�t
r

h

· u⇤
h

u

n+1
h

= u

⇤
h

��t
r

h

p
h

⇢n+1
h

find ⇢
h

0.3 Spatial Discretization

0.3.1 incompressibility

1

V

I

S

u · nds = 0

1

�x�y

⇣

�y(un+1
i+1/2,j � un+1

i�1/2,j) +�x(vn+1
i,j+1/2 � vn+1

i,j�1/2)
⌘

= 0

12. It is sometimes helpful to represents the steps in slightly different ways and on this slide we show a 
simple flowchart on the left and a pseudo code on the right. In both cases the steps are the same as on 
the previous slide: We set the ghost velocities, advect the density, find the predicted velocity, solve for 
the pressure and correct the velocity.

DNS of Multiphase Flows

Code

See sample matlab code CodeC1.m

%=================================================================== 
% A very simple Navier-Stokes solver for a drop falling in a rectangular 
% domain. The viscosity is taken to be a constant and a forward in time,  
% and a conservative centered in space discretization is used. The density  
% is advected by solving a simple advection-diffusion equation. 
%===================================================================

13. The full code is available as a download, but since it is only about hundred lines, we will go through 
the listing on the next slide. Remember though, that although this is a complete and working Navier-
Stokes solver, it is a very elementary one since it is only first order in time, we advect the density in a very 
rudimentary way, and we take the viscosity to be the same everywhere.
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   for i=2:nx+1,for j=2:ny       % TEMPORARY v-velocity
     vt(i,j)=(2.0/(r(i,j+1)+r(i,j)))*( 0.5*(ro(i,j+1)+ro(i,j))*v(i,j)+ dt* (  ...     
     -(0.0625/dx)*( (ro(i,j)+ro(i+1,j)+ro(i+1,j+1)+ro(i,j+1))*...
                                        (u(i,j)+u(i,j+1))*(v(i,j)+v(i+1,j)) ...
     - (ro(i,j)+ro(i,j+1)+ro(i-1,j+1)+ro(i-1,j))*...
                                    (u(i-1,j+1)+u(i-1,j))*(v(i,j)+v(i-1,j)) ) ...                                 
     -(0.25/dy)*(ro(i,j+1)*(v(i,j+1)+v(i,j))^2-ro(i,j)*(v(i,j)+v(i,j-1))^2 ) ...
     + 0.5*(ro(i,j+1)+ro(i,j))*gy ...
     +m0*((v(i+1,j)-2*v(i,j)+v(i-1,j))/dx^2+(v(i,j+1)-2*v(i,j)+v(i,j-1))/dy^2)) );
   end,end
%========================================================================     
    % Compute source term and the coefficient for p(i,j)
    rt=r; lrg=1000;
    rt(1:nx+2,1)=lrg;rt(1:nx+2,ny+2)=lrg; rt(1,1:ny+2)=lrg;rt(nx+2,1:ny+2)=lrg;

    for i=2:nx+1,for j=2:ny+1
        tmp1(i,j)= (0.5/dt)*( (ut(i,j)-ut(i-1,j))/dx+(vt(i,j)-vt(i,j-1))/dy );
        tmp2(i,j)=1.0/( (1./dx)*( 1./(dx*(rt(i+1,j)+rt(i,j)))+...
                                     1./(dx*(rt(i-1,j)+rt(i,j)))  )+...
                        (1./dy)*(1./(dy*(rt(i,j+1)+rt(i,j)))+...
                                    1./(dy*(rt(i,j-1)+rt(i,j)))   )   );
    end,end

    for it=1:maxit                % SOLVE FOR PRESSURE
      oldArray=p;
      for i=2:nx+1,for j=2:ny+1
          p(i,j)=(1.0-beta)*p(i,j)+beta* tmp2(i,j)*(...
          (1./dx)*( p(i+1,j)/(dx*(rt(i+1,j)+rt(i,j)))+...
                       p(i-1,j)/(dx*(rt(i-1,j)+rt(i,j))) )+...
          (1./dy)*( p(i,j+1)/(dy*(rt(i,j+1)+rt(i,j)))+...
                       p(i,j-1)/(dy*(rt(i,j-1)+rt(i,j))) ) - tmp1(i,j));
      end,end
      if max(max(abs(oldArray-p))) <maxError, break,end
    end
                                      
    for i=2:nx, for j=2:ny+1   % CORRECT THE u-velocity 
          u(i,j)=ut(i,j)-(dt*2.0/(r(i+1,j)+r(i,j)))*(p(i+1,j)-p(i,j))/dx;
    end, end
      
    for i=2:nx+1, for j=2:ny   % CORRECT THE v-velocity
          v(i,j)=vt(i,j)-(dt*2.0/(r(i,j+1)+r(i,j)))*(p(i,j+1)-p(i,j))/dy;
    end, end
%========================================================================     
   time=time+dt                   % plot the results
   uu(1:nx+1,1:ny+1)=0.5*(u(1:nx+1,2:ny+2)+u(1:nx+1,1:ny+1));
   vv(1:nx+1,1:ny+1)=0.5*(v(2:nx+2,1:ny+1)+v(1:nx+1,1:ny+1));
   for i=1:nx+1,xh(i)=dx*(i-1);end;     for j=1:ny+1,yh(j)=dy*(j-1);end
   hold off,contour(x,y,flipud(rot90(r))),axis equal,axis([0 Lx 0 Ly]);
   hold on;quiver(xh,yh,flipud(rot90(uu)),flipud(rot90(vv)),'r');
   pause(0.01)
end

%========================================================================
% CodeC1.m
% A very simple Navier-Stokes solver for a drop falling in a rectangular
% domain. The viscosity is taken to be a constant and a forward in time, 
% and a conservative centered in space discretization is used. The density 
% is advected by solving a simple advection-diffusion equation.
%========================================================================
%domain size and physical variables
Lx=1.0;Ly=1.0;gx=0.0;gy=-100.0; rho1=1.0; rho2=2.0; m0=0.01;
unorth=0;usouth=0;veast=0;vwest=0;time=0.0; 
rad=0.15;xc=0.5;yc=0.7; % Initial drop size and location

% Numerical variables
nx=32;ny=32;dt=0.00125;nstep=100; maxit=200;maxError=0.001;beta=1.2;

% Zero various arrys
u=zeros(nx+1,ny+2);  v=zeros(nx+2,ny+1);  p=zeros(nx+2,ny+2);
ut=zeros(nx+1,ny+2); vt=zeros(nx+2,ny+1); tmp1=zeros(nx+2,ny+2); 
uu=zeros(nx+1,ny+1); vv=zeros(nx+1,ny+1); tmp2=zeros(nx+2,ny+2);
 
% Set the grid 
dx=Lx/nx;dy=Ly/ny;
for i=1:nx+2; x(i)=dx*(i-1.5);end; for j=1:ny+2; y(j)=dy*(j-1.5);end;

% Set density in the domain and the drop
r=zeros(nx+2,ny+2)+rho1;
for i=2:nx+1,for j=2:ny+1; 
  if ( (x(i)-xc)^2+(y(j)-yc)^2 < rad^2), r(i,j)=rho2;end, 
end,end
%================== START TIME LOOP======================================
 for is=1:nstep,is
    % tangential velocity at boundaries
    u(1:nx+1,1)=2*usouth-u(1:nx+1,2);u(1:nx+1,ny+2)=2*unorth-u(1:nx+1,ny+1);
    v(1,1:ny+1)=2*vwest-v(2,1:ny+1);v(nx+2,1:ny+1)=2*veast-v(nx+1,1:ny+1);
%=======ADVECT DENSITY using centered difference plus diffusion ==========
    ro=r;
    for i=2:nx+1,for j=2:ny+1
          r(i,j)=ro(i,j)-(0.5*dt/dx)*(u(i,j)*(ro(i+1,j)...
            +ro(i,j))-u(i-1,j)*(ro(i-1,j)+ro(i,j)))-(0.5* dt/dy)*(v(i,j)*(ro(i,j+1)...
            +ro(i,j))-v(i,j-1)*(ro(i,j-1)+ro(i,j))  )...
            +(m0*dt/dx/dx)*(ro(i+1,j)-2.0*ro(i,j)+ro(i-1,j))...
            +(m0*dt/dy/dy)*(ro(i,j+1)-2.0*ro(i,j)+ro(i,j-1));
   end,end
%===== Find temporary velocities ========================================     
   for i=2:nx,for j=2:ny+1      % TEMPORARY u-velocity
     ut(i,j)=(2.0/(r(i+1,j)+r(i,j)))* ( 0.5*(ro(i+1,j)+ro(i,j))*u(i,j)+ dt* (...
     -(0.25/dx)*(ro(i+1,j)*(u(i+1,j)+u(i,j))^2-ro(i,j)*(u(i,j)+u(i-1,j))^2) ...
     -(0.0625/dy)*( (ro(i,j)+ro(i+1,j)+ro(i,j+1)+ro(i+1,j+1))*...
                                       (u(i,j+1)+u(i,j))*(v(i+1,j)+v(i,j)) ...
     -(ro(i,j)+ro(i+1,j)+ro(i+1,j-1)+ro(i,j-1))*(u(i,j)...
                                       +u(i,j-1))*(v(i+1,j-1)+v(i,j-1))) ...
     + 0.5*(ro(i+1,j)+ro(i,j))*gx ...
     +m0*((u(i+1,j)-2*u(i,j)+u(i-1,j))/dx^2+ (u(i,j+1)-2*u(i,j)+u(i,j-1))/dy^2)) );
   end,end

14-1. The full code is shown here, in sufficiently small fount so that it fits into two columns. After the 
header we set the various parameters that define the problem and the numerical solution. Then we 
define the various arrays and set them to zero. The initial density distribution, defining the drop, is set in 
the light yellow box. Most of the code consists of the time loop, which is shown with a gray background. 
Inside the time loop we first enforce the tangential velocities at the boundaries by setting the ghost 
points in the pinkish box. Then we advect the density. The predicted velocities are computed in the light 
brown box at the bottom of the first column and the top of the second column. In the light blue box the 
pressure equation is solved and the velocities are corrected in the dark pink or lightly red box. The final 
thing is the plotting, done in the green box. Notice that since we are using a staggered grid, we need to 
find the velocity at a common point before doing a quiver plot.
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   for i=2:nx+1,for j=2:ny       % TEMPORARY v-velocity
     vt(i,j)=(2.0/(r(i,j+1)+r(i,j)))*( 0.5*(ro(i,j+1)+ro(i,j))*v(i,j)+ dt* (  ...     
     -(0.0625/dx)*( (ro(i,j)+ro(i+1,j)+ro(i+1,j+1)+ro(i,j+1))*...
                                        (u(i,j)+u(i,j+1))*(v(i,j)+v(i+1,j)) ...
     - (ro(i,j)+ro(i,j+1)+ro(i-1,j+1)+ro(i-1,j))*...
                                    (u(i-1,j+1)+u(i-1,j))*(v(i,j)+v(i-1,j)) ) ...                                 
     -(0.25/dy)*(ro(i,j+1)*(v(i,j+1)+v(i,j))^2-ro(i,j)*(v(i,j)+v(i,j-1))^2 ) ...
     + 0.5*(ro(i,j+1)+ro(i,j))*gy ...
     +m0*((v(i+1,j)-2*v(i,j)+v(i-1,j))/dx^2+(v(i,j+1)-2*v(i,j)+v(i,j-1))/dy^2)) );
   end,end
%========================================================================     
    % Compute source term and the coefficient for p(i,j)
    rt=r; lrg=1000;
    rt(1:nx+2,1)=lrg;rt(1:nx+2,ny+2)=lrg; rt(1,1:ny+2)=lrg;rt(nx+2,1:ny+2)=lrg;

    for i=2:nx+1,for j=2:ny+1
        tmp1(i,j)= (0.5/dt)*( (ut(i,j)-ut(i-1,j))/dx+(vt(i,j)-vt(i,j-1))/dy );
        tmp2(i,j)=1.0/( (1./dx)*( 1./(dx*(rt(i+1,j)+rt(i,j)))+...
                                     1./(dx*(rt(i-1,j)+rt(i,j)))  )+...
                        (1./dy)*(1./(dy*(rt(i,j+1)+rt(i,j)))+...
                                    1./(dy*(rt(i,j-1)+rt(i,j)))   )   );
    end,end

    for it=1:maxit                % SOLVE FOR PRESSURE
      oldArray=p;
      for i=2:nx+1,for j=2:ny+1
          p(i,j)=(1.0-beta)*p(i,j)+beta* tmp2(i,j)*(...
          (1./dx)*( p(i+1,j)/(dx*(rt(i+1,j)+rt(i,j)))+...
                       p(i-1,j)/(dx*(rt(i-1,j)+rt(i,j))) )+...
          (1./dy)*( p(i,j+1)/(dy*(rt(i,j+1)+rt(i,j)))+...
                       p(i,j-1)/(dy*(rt(i,j-1)+rt(i,j))) ) - tmp1(i,j));
      end,end
      if max(max(abs(oldArray-p))) <maxError, break,end
    end
                                      
    for i=2:nx, for j=2:ny+1   % CORRECT THE u-velocity 
          u(i,j)=ut(i,j)-(dt*2.0/(r(i+1,j)+r(i,j)))*(p(i+1,j)-p(i,j))/dx;
    end, end
      
    for i=2:nx+1, for j=2:ny   % CORRECT THE v-velocity
          v(i,j)=vt(i,j)-(dt*2.0/(r(i,j+1)+r(i,j)))*(p(i,j+1)-p(i,j))/dy;
    end, end
%========================================================================     
   time=time+dt                   % plot the results
   uu(1:nx+1,1:ny+1)=0.5*(u(1:nx+1,2:ny+2)+u(1:nx+1,1:ny+1));
   vv(1:nx+1,1:ny+1)=0.5*(v(2:nx+2,1:ny+1)+v(1:nx+1,1:ny+1));
   for i=1:nx+1,xh(i)=dx*(i-1);end;     for j=1:ny+1,yh(j)=dy*(j-1);end
   hold off,contour(x,y,flipud(rot90(r))),axis equal,axis([0 Lx 0 Ly]);
   hold on;quiver(xh,yh,flipud(rot90(uu)),flipud(rot90(vv)),'r');
   pause(0.01)
end

%========================================================================
% CodeC1.m
% A very simple Navier-Stokes solver for a drop falling in a rectangular
% domain. The viscosity is taken to be a constant and a forward in time, 
% and a conservative centered in space discretization is used. The density 
% is advected by solving a simple advection-diffusion equation.
%========================================================================
%domain size and physical variables
Lx=1.0;Ly=1.0;gx=0.0;gy=-100.0; rho1=1.0; rho2=2.0; m0=0.01;
unorth=0;usouth=0;veast=0;vwest=0;time=0.0; 
rad=0.15;xc=0.5;yc=0.7; % Initial drop size and location

% Numerical variables
nx=32;ny=32;dt=0.00125;nstep=100; maxit=200;maxError=0.001;beta=1.2;

% Zero various arrys
u=zeros(nx+1,ny+2);  v=zeros(nx+2,ny+1);  p=zeros(nx+2,ny+2);
ut=zeros(nx+1,ny+2); vt=zeros(nx+2,ny+1); tmp1=zeros(nx+2,ny+2); 
uu=zeros(nx+1,ny+1); vv=zeros(nx+1,ny+1); tmp2=zeros(nx+2,ny+2);
 
% Set the grid 
dx=Lx/nx;dy=Ly/ny;
for i=1:nx+2; x(i)=dx*(i-1.5);end; for j=1:ny+2; y(j)=dy*(j-1.5);end;

% Set density in the domain and the drop
r=zeros(nx+2,ny+2)+rho1;
for i=2:nx+1,for j=2:ny+1; 
  if ( (x(i)-xc)^2+(y(j)-yc)^2 < rad^2), r(i,j)=rho2;end, 
end,end
%================== START TIME LOOP======================================
 for is=1:nstep,is
    % tangential velocity at boundaries
    u(1:nx+1,1)=2*usouth-u(1:nx+1,2);u(1:nx+1,ny+2)=2*unorth-u(1:nx+1,ny+1);
    v(1,1:ny+1)=2*vwest-v(2,1:ny+1);v(nx+2,1:ny+1)=2*veast-v(nx+1,1:ny+1);
%=======ADVECT DENSITY using centered difference plus diffusion ==========
    ro=r;
    for i=2:nx+1,for j=2:ny+1
          r(i,j)=ro(i,j)-(0.5*dt/dx)*(u(i,j)*(ro(i+1,j)...
            +ro(i,j))-u(i-1,j)*(ro(i-1,j)+ro(i,j)))-(0.5* dt/dy)*(v(i,j)*(ro(i,j+1)...
            +ro(i,j))-v(i,j-1)*(ro(i,j-1)+ro(i,j))  )...
            +(m0*dt/dx/dx)*(ro(i+1,j)-2.0*ro(i,j)+ro(i-1,j))...
            +(m0*dt/dy/dy)*(ro(i,j+1)-2.0*ro(i,j)+ro(i,j-1));
   end,end
%===== Find temporary velocities ========================================     
   for i=2:nx,for j=2:ny+1      % TEMPORARY u-velocity
     ut(i,j)=(2.0/(r(i+1,j)+r(i,j)))* ( 0.5*(ro(i+1,j)+ro(i,j))*u(i,j)+ dt* (...
     -(0.25/dx)*(ro(i+1,j)*(u(i+1,j)+u(i,j))^2-ro(i,j)*(u(i,j)+u(i-1,j))^2) ...
     -(0.0625/dy)*( (ro(i,j)+ro(i+1,j)+ro(i,j+1)+ro(i+1,j+1))*...
                                       (u(i,j+1)+u(i,j))*(v(i+1,j)+v(i,j)) ...
     -(ro(i,j)+ro(i+1,j)+ro(i+1,j-1)+ro(i,j-1))*(u(i,j)...
                                       +u(i,j-1))*(v(i+1,j-1)+v(i,j-1))) ...
     + 0.5*(ro(i+1,j)+ro(i,j))*gx ...
     +m0*((u(i+1,j)-2*u(i,j)+u(i-1,j))/dx^2+ (u(i,j+1)-2*u(i,j)+u(i,j-1))/dy^2)) );
   end,end

14-2. To get velocities at points that start on the boundary, we average u(i,j) and u(i,j+1) and v(i,j) and 
v(i+1,j) to get velocities at the corner of the pressure control volumes. The last pause statement ensures 
that the solution is plotted in every step. We note that we plot the solution at the end of the time loop 
so the first frame is after one time step. We could, obviously also plot at the beginning of the loop but 
then we would take one extra step at the end.
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Limitations on 
the time step

where

The time step needs to be small enough so that the code is 
stable. For the explicit method used here we need to use:
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15. Since our method is explicit, the size of the time step must be small enough so that the method 
remains stable. We will not discuss the stability here, but simply quote the results. Those limits are 
derived for first order in time and second order centered in space discretization of the linear advection-
diffusion equations but have been found to apply to the same approximations of the Navier-Stokes 
equations. As implemented the method is subject to two stability constrains. The first comes from the 
diffusion part and says that the viscosity times the size of the time step, divided by the density and the 
grid size squared must be less then one fourth. The second limitation comes from the fact that the 
current scheme is unstable for the inviscid case and the viscosity must be sufficiently large to stabilize the 
scheme. Thus, the maximum velocity squared times density and delta t, divided by the viscosity, must be 
less than 2.
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Problem specification:
Lx=1.0; Ly=1.0;
gx=0.0; gy=-100.0; 
rho1=1.0; rho2=2.0; 
m0=0.01;

Tangential velocities:
unorth=0;usouth=0;
veast=0;vwest=0;

Initial drop size and location
rad=0.15; xc=0.5; yc=0.7;     

Numerical variables
nx=32; ny=32; 
dt=0.00125; nstep=100; 

Pressure solver
maxit=200; beta=1.2;
maxError=0.001;
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Example:

An initially stationary droplet in a square 
box that falls down due to gravity.

Here we ignore surface tension, take 
the viscosity to be the same as the 
ambient fluid and advect density by 
solving the advection-diffusion equation

16. To test our code we use it to simulate the fall of a circular drop in a square domain. It is important to 
start with a simple problem that is easily solved, so we take the density of the drop to be only twice that 
of the ambient fluid. The tangent velocities at all walls are zero, explicitly set by specifying u north and so 
on and the normal velocities are also zero since the velocity field is initially set to zero and the boundary 
points are not updated. The drop has a radius of 0.15 and is initially located at x equal to 0.5 and y equal 
to 0.7. The grid is 32 times 32 pressure cells and we follow the evolution for 100 time steps, taking dt 
equal to 0.00125, determined by trial and error. 
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Density 
at final 
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Numerical results for a falling 
drop on a 32 by 32 grid

17. The code is easily run interactively so that the evolution of the solution can be seen. Here, however, 
we just show a contour plot of the density and the velocity field after one time step and after 100 steps, 
at time 0.125 on the left. Because of the coarse grid the initial shape of the drop is somewhat jagged. As 
the drop falls, it deforms, becoming flatter with the back “caving in,” and it also quickly becomes a 
smooth blob, instead of a drop with a sharp boundary. The density at the final time is shown in the top 
frame on the right hand side and in the bottom frame we show what it should look like. It is clear that 
even though it only fell a short distance, the present code does a terribly bad job at advecting the 
density and we need a better approach. It is true that we did add diffusion, but as discussed in the next 
lecture, direct advection of the density requires either a low order method with a similar level of diffusion 
or higher order methods that produce oscillatory or “wiggly” solutions. A different strategy for updating 
the density is therefore needed.


