
DNS of Multiphase Flows — Simple Front Tracking
Direct Numerical
Simulations of
Multiphase
Flows-5  
 
Advecting the Marker
Function using Front
Tracking (1 of 2)
Gretar Tryggvason

1. One of the major challenges in simulating multiphase flows is the advection of the marker function
that identifies the different fluids. There are two main ways to do so: We can update the marker function
directly by solving an advection equation, or we can move the interface separating the different fluids
and then reconstruct the marker function from the location of the interface. Here we do the latter by
placing connected marker points at the interface, and then moving them with the flow.

DNS of Multiphase Flows — Simple Front Tracking

Here we focus on a finite
region bounded by a
closed curve,
representing a bubble or
a drop.

We will start by assuming
that the surface tension is
zero and the viscosity of
both fluid is the same.

As for the flow solver, we
will start using an explicit
first order method for the
time integration.

t+Δt"

t"

Surface tension and unequal
viscosities will be added later,
along with second order time
integration

2. When we use connected marker points to advect an interface for complex three-dimensional flows, it
is important to use a data structure for the interface that allows for maximum flexibility in updating the
location of the points and their connectivity, yet is sufficiently simple so that it can be easily understood.
Indeed, for such flows, the data structure can determine how easily the code is developed and new
capabilities are added. For two-dimensional flows, on the other hand, essentially any data structure can
be made to work, relatively easily. Here we will use a particularly simple data structure and represent the
interface by ordered marker points. While this results in a loss of flexibility, it works well for simple
problems and provides a straightforward introduction to the use of connected marker point to advect
interfaces. We will start by implementing the approach for flow where the only difference between the
different fluid is their density and where surface tension is zero. We will also use a first order time
integration, as we used for the flow solver. Surface tension and different viscosities, as well as higher
order time integration, will be added later.

DNS of Multiphase Flows — Simple Front Tracking

Considered an ordered set of
connected points enclosing a
closed region

To simplify the computations
we introduce two ghost point
so that the last point (Nf+1) is
the same as the first point and
(Nf+2) is equal to the second
point

Since the points are
ordered, their distance
and other quantities
are easily found

1!
2!

3!

Nf!
Nf -1!

Nf -2!

4!
5!l!

l-1!

l+1!

10

Direct Numerical Simulations of Multiphase Flows-5: Advecting the Marker Function using Front Tracking

x

f

(l) = (x(l), y(l)), l = 1,, N
f

�s
l,l�1 =

p

(x(l)� x(l � 1))2 + (y(l)� y(l � 1))2

i = FLOOR(x
f

(l)/�x) + 1

i = FLOOR((x
f

(l) + 0.5�x)/�x) + 1

�l

f

= �
i,j

(
xi+1�xp

�x

)(
yj+1�yp

�y

) + �
i,j+1(

xi+1�xp

�x

)(
yp�yj

�y

)+

�
i+1,j(

xp�xi

�x

)(
yj+1�yp

�y

) + �
i+1,j+1(

xp�xi

�x

)(
yp�yj

�y

)

�l

f

= wl

i,j

�
i,j

+ wl

i,j+1�i,j+1 + wl

i+1,j�i+1,j + wl

i+1,j+1�i+1,j+1

X

i,j

wl

i,j

= 1

�l

f

=
X

ij

wl

i,j

�
i,j

10

Direct Numerical Simulations of Multiphase Flows-5: Advecting the Marker Function using Front Tracking

x

f

(l) = (x(l), y(l)), l = 1,, N
f

�s
l,l�1 =

p

(x(l)� x(l � 1))2 + (y(l)� y(l � 1))2

i = FLOOR(x
f

(l)/�x) + 1

i = FLOOR((x
f

(l) + 0.5�x)/�x) + 1

�l

f

= �
i,j

(
xi+1�xp

�x

)(
yj+1�yp

�y

) + �
i,j+1(

xi+1�xp

�x

)(
yp�yj

�y

)+

�
i+1,j(

xp�xi

�x

)(
yj+1�yp

�y

) + �
i+1,j+1(

xp�xi

�x

)(
yp�yj

�y

)

�l

f

= wl

i,j

�
i,j

+ wl

i,j+1�i,j+1 + wl

i+1,j�i+1,j + wl

i+1,j+1�i+1,j+1

X

i,j

wl

i,j

= 1

�l

f

=
X

ij

wl

i,j

�
i,j

3. We will start by assuming that we are only dealing with one interface and that it is closed, thus
representing a bubble or a drop embedded in a different fluid. Since the points are ordered, we use an
index L that takes on the values 1, 2, 3, and so on until we have enough points to discretize the entire
interface. We will take this number to be Nf. To simplify dealing with the first and the last points, we
introduce two ghost points on either end, so the total number of points is Nf + 2 and the interface is
resolved by points 2 to Nf + 1. The coordinate of point number 1 is set equal to the coordinate of the
last point resolving the interface, point Nf + 1, and the coordinate of point number Nf + 2 is set equal to
point 2, the first point used to resolve the interface. By using the ghost points we can treat all the points
on the interface in the same way and then simply update the ghost points in a separate step.

DNS of Multiphase Flows — Simple Front Tracking

%================== SETUP THE FRONT ===================
Nf=100; xf=zeros(1,Nf+2);yf=zeros(1,Nf+2);
uf=zeros(1,Nf+2);vf=zeros(1,Nf+2);
tx=zeros(1,Nf+2);ty=zeros(1,Nf+2);

for l=1:Nf+2, xf(l)=xc-rad*sin(2.0*pi*(l-1)/(Nf));
 yf(l)=yc+rad*cos(2.0*pi*(l-1)/(Nf)); end

12

(xc,yc)

Here we construct a circle,
starting at the top and going
counter clockwise.

Notice that there are ghost points
at both ends so that we run over
the points by:
 for l=2:Nf+1 …. end
and then set the values at
1 and Nf+2

Nf

Nf+1Nf+2

Nf-13

rad ✓

4. If the initial shape of the interface is a circle, its construction is particularly easy. Once we have decided
where the center of the circle, xc and yc, is, where we start and in what direction to go, the coordinates
are easily found. We can obviously start anywhere and go either clockwise or counter clockwise, but here
we start directly above the center and go in the counter clockwise direction. The x coordinate is given as
the x coordinate of the center minus the radius times the sine of the angle from the vertical axis, and the
y coordinate is then given by the y coordinate of the center plus the radius times the cosine of the angle
from the vertical axis. The angle increment is two pi divided by the number of points used to resolve the
interface, Nf-1, and we increment it by l-1, where l is the point number, since we want to start with a zero
angle so that the first point is directly above the center.

DNS of Multiphase Flows — Simple Front Tracking

Transferring
information
between the
front and the

grid

5. Since we are using two grids, the fixed regular structured two-dimensional grid where we solve the
fluid equations and the one-dimensional moving grid, which we use to mark the interface and construct
the density and the surface tension, we need to transfer information between those two grids.

DNS of Multiphase Flows — Simple Front Tracking

To transfer information between the front and the fixed grid,
we need to find the grid point closest to the front

The index of the point to the left
of the front location is given by

0 1 2 3 4 5 nx

Horizontal Velocity (u)

Left Boundary Front Location Right Boundary

10

Direct Numerical Simulations of Multiphase Flows-5: Advecting the Marker Function using Front Tracking

x

f

(l) = (x(l), y(l)), l = 1,, N
f

�s
l,l�1 =

p

(x(l)� x(l � 1))2 + (y(l)� y(l � 1))2

i = FLOOR(x
f

(l)/�x) + 1

i = FLOOR((x
f

(l) + 0.5�x)/�x) + 1

�l

f

= �
i,j

(
xi+1�xp

�x

)(
yj+1�yp

�y

) + �
i,j+1(

xi+1�xp

�x

)(
yp�yj

�y

)+

�
i+1,j(

xp�xi

�x

)(
yj+1�yp

�y

) + �
i+1,j+1(

xp�xi

�x

)(
yp�yj

�y

)

�l

f

= wl

i,j

�
i,j

+ wl

i,j+1�i,j+1 + wl

i+1,j�i+1,j + wl

i+1,j+1�i+1,j+1

X

i,j

wl

i,j

= 1

�l

f

=
X

ij

wl

i,j

�
i,j

Control
volume
boundary

Grid points
where the
velocity is
stored

The velocity at the front is interpolated to
the points on the left and the right

6. The easiest way is to start with a point on the interface and ask what point on the fixed grid is closest.
This, as we will emphasize again later, is a much simpler problem than asking what interface point is
closest to a given grid point! Thus we try to always start with an interface point and find the closest point
on the fixed grid. How this is done is perhaps best explained by assuming a regular structured one-
dimensional fixed grid with evenly spaced grid points. Here, the grid points, or the location where we
store each value are denoted by small circles and short vertical lines indicate the boundaries of the
control volumes. For simplicity we start by identifying the first point, located on the left boundary, as grid
point number zero. For a one dimensional problem the front is a point and we can find the fixed grid
point to the left of it by dividing the location of the front by the distance between each grid points and
taking the integer value. The standard way of converting a floating point value to an integer takes the
value to the left for positive values and the value to the right for negative values. We want the value to
the left for all cases and therefore use the FLOOR command instead of the INT command.

DNS of Multiphase Flows — Simple Front Tracking

To transfer information between the front and the fixed grid,
we need to find the grid point closest to the front

The point to the left is given by

For grids displaced half a cell to the right we use

1 2 3 4 5 nx nx+1

Horizontal Velocity (u)

Left Boundary Front Location Right Boundary

1 2 3 4 5 nx nx+1 nx+2

Pressure and Vertical Velocity (v)

10

Direct Numerical Simulations of Multiphase Flows-5: Advecting the Marker Function using Front Tracking

x

f

(l) = (x(l), y(l)), l = 1,, N
f

�s
l,l�1 =

p

(x(l)� x(l � 1))2 + (y(l)� y(l � 1))2

i = FLOOR(x
f

(l)/�x) + 1

i = FLOOR((x
f

(l) + 0.5�x)/�x) + 1

�l

f

= �
i,j

(
xi+1�xp

�x

)(
yj+1�yp

�y

) + �
i,j+1(

xi+1�xp

�x

)(
yp�yj

�y

)+

�
i+1,j(

xp�xi

�x

)(
yj+1�yp

�y

) + �
i+1,j+1(

xp�xi

�x

)(
yp�yj

�y

)

�l

f

= wl

i,j

�
i,j

+ wl

i,j+1�i,j+1 + wl

i+1,j�i+1,j + wl

i+1,j+1�i+1,j+1

X

i,j

wl

i,j

= 1

�l

f

=
X

ij

wl

i,j

�
i,j

10

Direct Numerical Simulations of Multiphase Flows-5: Advecting the Marker Function using Front Tracking

x

f

(l) = (x(l), y(l)), l = 1,, N
f

�s
l,l�1 =

p

(x(l)� x(l � 1))2 + (y(l)� y(l � 1))2

i = FLOOR(x
f

(l)/�x) + 1

i = FLOOR((x
f

(l) + 0.5�x)/�x) + 1

�l

f

= �
i,j

(
xi+1�xp

�x

)(
yj+1�yp

�y

) + �
i,j+1(

xi+1�xp

�x

)(
yp�yj

�y

)+

�
i+1,j(

xp�xi

�x

)(
yj+1�yp

�y

) + �
i+1,j+1(

xp�xi

�x

)(
yp�yj

�y

)

�l

f

= wl

i,j

�
i,j

+ wl

i,j+1�i,j+1 + wl

i+1,j�i+1,j + wl

i+1,j+1�i+1,j+1

X

i,j

wl

i,j

= 1

�l

f

=
X

ij

wl

i,j

�
i,j

7. In our implementation, where we use a staggered grid, the first point is on the boundary in some
cases, such as for the horizontal velocity, but for the vertical velocity, the pressure and the density it is
half a grid spacing outside the domain. Furthermore, the index starts from 1, not zero. The expression on
the last slide is, however, easily modified. When the first grid point, with i=1, is on the boundary we
simply add one to the index found earlier, and when the first grid point, where i=1, is half a grid spacing
to the left of the boundary we add half delta x to the location of the front before applying the FLOOR
function. Since the index for the first point is one, we also need to add one, as for the first case.

DNS of Multiphase Flows — Simple Front Tracking

The velocity of the front points is interpolated from the fixed
grid using a bilinear interpolation. In general, for any quantity:

The bilinear interpolation ensures:

• that the value of the interpolated quantity is bounded and
• that the value coincides with the value at a grid point, if

the front point and the grid point location is the same

Since the different velocity components are stored on
different grids, those are interpolated separately.

10

Direct Numerical Simulations of Multiphase Flows-5: Advecting the Marker Function using Front Tracking

x

f

(l) = (x(l), y(l)), l = 1,, N
f

�s
l,l�1 =

p

(x(l)� x(l � 1))2 + (y(l)� y(l � 1))2

i = FLOOR(x
f

(l)/�x) + 1

i = FLOOR((x
f

(l) + 0.5�x)/�x) + 1

�l

f

= �
i,j

(
xi+1�xp

�x

)(
yj+1�yp

�y

) + �
i,j+1(

xi+1�xp

�x

)(
yp�yj

�y

)+

�
i+1,j(

xp�xi

�x

)(
yj+1�yp

�y

) + �
i+1,j+1(

xp�xi

�x

)(
yp�yj

�y

)

�l

f

= wl

i,j

�
i,j

+ wl

i,j+1�i,j+1 + wl

i+1,j�i+1,j + wl

i+1,j+1�i+1,j+1

X

i,j

wl

i,j

= 1

�l

f

=
X

ij

wl

i,j

�
i,j

8. In many cases the information that an interface point needs must be interpolated from the fixed grid.
This is the case for the velocities, as well as quantities like the temperature in problems where we include
the energy equation. Once we know the location of a front point with respect to the fixed fluid grid the
interpolation is straightforward. Assume that a front point denoted by the subscript f is located between
grid points i and i+1 in the x direction and between j and j+1 in the y direction. Since the value of the
quantity that we want to interpolate, call it phi, at the front point must be the same as the value at a grid
point, if the front point location is the same as that of the grid point, we can write down a linear
interpolation function directly. This expression relates the value of phi on the front to the value at the
grid points around it and it should be clear that that the expression for phi on the slide is linear in x and
y, it is bounded by the grid point values, and that phi at the front is equal to the value at a grid point if
the front point is moved to that grid point. Notice that since the different velocity components are
stored at different locations, or on different grids, we need to interpolate those separately.

DNS of Multiphase Flows — Simple Front Tracking

The bilinear interpolation is often referred to as area weighting
since the weights are the fractional areas shown below

!i, j+1 !i+1, j+1

wi+1, j+1
l

! f
l

!i, j !i+1, j
wi, j+1
l

wi, j
lwi+1, j

l

yj+1

yj
xi xi+1

10

Direct Numerical Simulations of Multiphase Flows-5: Advecting the Marker Function using Front Tracking

x

f

(l) = (x(l), y(l)), l = 1,, N
f

�s
l,l�1 =

p

(x(l)� x(l � 1))2 + (y(l)� y(l � 1))2

i = FLOOR(x
f

(l)/�x) + 1

i = FLOOR((x
f

(l) + 0.5�x)/�x) + 1

�l

f

= �
i,j

(
xi+1�xp

�x

)(
yj+1�yp

�y

) + �
i,j+1(

xi+1�xp

�x

)(
yp�yj

�y

)+

�
i+1,j(

xp�xi

�x

)(
yj+1�yp

�y

) + �
i+1,j+1(

xp�xi

�x

)(
yp�yj

�y

)

�l

f

= wl

i,j

�
i,j

+ wl

i,j+1�i,j+1 + wl

i+1,j�i+1,j + wl

i+1,j+1�i+1,j+1

X

i,j

wl

i,j

= 1

�l

f

=
X

ij

wl

i,j

�
i,j

10

Direct Numerical Simulations of Multiphase Flows-5: Advecting the Marker Function using Front Tracking

x

f

(l) = (x(l), y(l)), l = 1,, N
f

�s
l,l�1 =

p

(x(l)� x(l � 1))2 + (y(l)� y(l � 1))2

i = FLOOR(x
f

(l)/�x) + 1

i = FLOOR((x
f

(l) + 0.5�x)/�x) + 1

�l

f

= �
i,j

(
xi+1�xp

�x

)(
yj+1�yp

�y

) + �
i,j+1(

xi+1�xp

�x

)(
yp�yj

�y

)+

�
i+1,j(

xp�xi

�x

)(
yj+1�yp

�y

) + �
i+1,j+1(

xp�xi

�x

)(
yp�yj

�y

)

�l

f

= wl

i,j

�
i,j

+ wl

i,j+1�i,j+1 + wl

i+1,j�i+1,j + wl

i+1,j+1�i+1,j+1

X

i,j

wl

i,j

= 1

�l

f

=
X

ij

wl

i,j

�
i,j

�l

f

= �
i,j

⇣x
i+1 � x

p

�x

⌘⇣y
j+1 � y

p

�y

⌘

+ �
i,j+1

⇣x
i+1 � x

p

�x

⌘⇣y
p

� y
j

�y

⌘

+

�
i+1,j

⇣x
p

� x
i

�x

⌘⇣y
j+1 � y

p

�y

⌘

+ �
i+1,j+1

⇣x
p

� x
i

�x

⌘⇣y
p

� y
j

�y

⌘

w
i,j

=
⇣x

i+1 � x
p

�x

⌘⇣y
j+1 � y

p

�y

⌘

w
i,j+1 =

⇣x
i+1 � x

p

�x

⌘⇣y
p

� y
j

�y

⌘

w
i+1,j =

⇣x
p

� x
i

�x

⌘⇣y
j+1 � y

p

�y

⌘

w
i+1,j+1 =

⇣x
p

� x
i

�x

⌘⇣y
p

� y
j

�y

⌘

u u u

For area weighting
the weights are:

9. We can rewrite the interpolation function in a slightly more general form by identifying the quantities
multiplying the grid point values as weights. For a linear interpolation the weights have a simple
geometric interpretation. The weight for grid point i,j, for example, is given by the x-coordinate of the
i+1 grid line minus the x coordinate of the front point times the y-coordinate of the j+1 grid line minus
the y coordinate of the front point, divided by the area of the grid cell (delta x times delta y). This is the
area fraction of the rectangle above and to the right of the front point. Similarly, the weight of the i+1,
j+1 grid point is the area fraction below and to the left of the front point, the weight of the i, j+1 grid
point is the area fraction below and to the right of the front point, and the weight of the i+1,j grid point
is the area fraction above and to the left of the front point. Thus, for each grid point the corresponding
weight is the area fraction of the area in the opposite corner. Obviously the weights must sum to one and
for the area fractions this is easily shown to be the case.

DNS of Multiphase Flows — Simple Front Tracking

In the code we loop over the front points and for every one of
them we determine the closest points on the fixed grid and
interpolate the u and v component of the velocity.

10

Direct Numerical Simulations of Multiphase Flows-5: Advecting the Marker Function using Front Tracking

x

f

(l) = (x(l), y(l)), l = 1,, N
f

�s
l,l�1 =

p

(x(l)� x(l � 1))2 + (y(l)� y(l � 1))2

i = FLOOR(x
f

(l)/�x) + 1

i = FLOOR((x
f

(l) + 0.5�x)/�x) + 1

�l

f

= �
i,j

(
xi+1�xp

�x

)(
yj+1�yp

�y

) + �
i,j+1(

xi+1�xp

�x

)(
yp�yj

�y

)+

�
i+1,j(

xp�xi

�x

)(
yj+1�yp

�y

) + �
i+1,j+1(

xp�xi

�x

)(
yp�yj

�y

)

�l

f

= wl

i,j

�
i,j

+ wl

i,j+1�i,j+1 + wl

i+1,j�i+1,j + wl

i+1,j+1�i+1,j+1

X

i,j

wl

i,j

= 1

�l

f

=
X

ij

wl

i,j

�
i,j

Since the different
components are on
different grids, we must
interpolate each
component separately.

10. In the code we loop over the front points and for every one of them we determine the closest points
on the fixed grid. Since the different velocity components are on different grids, we must interpolate
each component separately.

DNS of Multiphase Flows — Simple Front Tracking

The bilinear or area weighting is just one possible
interpolation function. Sometimes it is desirable to use
higher order ones that involve larger number of points on
the fixed grid. Then we have

10

Direct Numerical Simulations of Multiphase Flows-5: Advecting the Marker Function using Front Tracking

x

f

(l) = (x(l), y(l)), l = 1,, N
f

�s
l,l�1 =

p

(x(l)� x(l � 1))2 + (y(l)� y(l � 1))2

i = FLOOR(x
f

(l)/�x) + 1

i = FLOOR((x
f

(l) + 0.5�x)/�x) + 1

�l

f

= �
i,j

(
xi+1�xp

�x

)(
yj+1�yp

�y

) + �
i,j+1(

xi+1�xp

�x

)(
yp�yj

�y

)+

�
i+1,j(

xp�xi

�x

)(
yj+1�yp

�y

) + �
i+1,j+1(

xp�xi

�x

)(
yp�yj

�y

)

�l

f

= wl

i,j

�
i,j

+ wl

i,j+1�i,j+1 + wl

i+1,j�i+1,j + wl

i+1,j+1�i+1,j+1

X

i,j

wl

i,j

= 1

�l

f

=
X

ij

wl

i,j

�
i,j

10

Direct Numerical Simulations of Multiphase Flows-5: Advecting the Marker Function using Front Tracking

x

f

(l) = (x(l), y(l)), l = 1,, N
f

�s
l,l�1 =

p

(x(l)� x(l � 1))2 + (y(l)� y(l � 1))2

i = FLOOR(x
f

(l)/�x) + 1

i = FLOOR((x
f

(l) + 0.5�x)/�x) + 1

�l

f

= �
i,j

(
xi+1�xp

�x

)(
yj+1�yp

�y

) + �
i,j+1(

xi+1�xp

�x

)(
yp�yj

�y

)+

�
i+1,j(

xp�xi

�x

)(
yj+1�yp

�y

) + �
i+1,j+1(

xp�xi

�x

)(
yp�yj

�y

)

�l

f

= wl

i,j

�
i,j

+ wl

i,j+1�i,j+1 + wl

i+1,j�i+1,j + wl

i+1,j+1�i+1,j+1

X

i,j

wl

i,j

= 1

�l

f

=
X

ij

wl

i,j

�
i,j

The weights must sum to unity

and generally we require the weight to be such that the
front value is not just bounded by the grid values but that if
a front point coincides with a grid point then if gets the
value at the grid point.

11. The area weighting is just one possible interpolation function. Sometimes it is desirable to use higher
order ones that involve larger number of points on the fixed grid. The weights are then different but they
still need to sum to unity and generally we require the weights to ensure that the front value is not just
bounded by the grid values but that if a front point coincides with a grid point then if gets the value at
that grid point. Smoother weight can sometimes be important if surface tension is high or the density
ratio across the interface is large, but I should emphasize that the simple area weighting presented here
works very well for a wide range of problems.

DNS of Multiphase Flows — Simple Front Tracking

Moving the
front

12. Once we have interpolated the velocity of the front points from the fixed grid we are ready to move
them.

DNS of Multiphase Flows — Simple Front Tracking

Once the velocity of the interface points have been found,
their new location can be found.

Using a simple first-order
explicit method:

Or, in component form:

t+Δt"

t"

t+Δt"

t"

10

Direct Numerical Simulations of Multiphase Flows-5: Advecting the Marker Function using Front Tracking

x

f

(l) = (x(l), y(l)), l = 1,, N
f

�s
l,l�1 =

p

(x(l)� x(l � 1))2 + (y(l)� y(l � 1))2

i = FLOOR(x
f

(l)/�x) + 1

i = FLOOR((x
f

(l) + 0.5�x)/�x) + 1

�l

f

= �
i,j

(xi+1�xp

�x

)(yj+1�yp

�y

) + �
i,j+1(

xi+1�xp

�x

)(yp�yj

�y

)+

�
i+1,j(

xp�xi

�x

)(yj+1�yp

�y

) + �
i+1,j+1(

xp�xi

�x

)(yp�yj

�y

)

�l

f

= wl

i,j

�
i,j

+ wl

i,j+1�i,j+1 + wl

i+1,j�i+1,j + wl

i+1,j+1�i+1,j+1

X

i,j

wl

i,j

= 1

�l

f

=
X

ij

wl

i,j

�
i,j

�l

f

= �
i,j

⇣x
i+1 � x

p

�x

⌘⇣y
j+1 � y

p

�y

⌘

+ �
i,j+1

⇣x
i+1 � x

p

�x

⌘⇣y
p

� y
j

�y

⌘

+

�
i+1,j

⇣x
p

� x
i

�x

⌘⇣y
j+1 � y

p

�y

⌘

+ �
i+1,j+1

⇣x
p

� x
i

�x

⌘⇣y
p

� y
j

�y

⌘

w
i,j

=
⇣x

i+1 � x
p

�x

⌘⇣y
j+1 � y

p

�y

⌘

w
i,j+1 =

⇣x
i+1 � x

p

�x

⌘⇣y
p

� y
j

�y

⌘

w
i+1,j =

⇣x
p

� x
i

�x

⌘⇣y
j+1 � y

p

�y

⌘

w
i+1,j+1 =

⇣x
p

� x
i

�x

⌘⇣y
p

� y
j

�y

⌘

�s =

s

⇣x
j�1 � x

l

�x

⌘2
+

⇣y
j�1 � y

l

�y

⌘2

x

n+1
f

= x

n

f

+ u

n

f

�t

xn+1
f

= xn

f

+ un

f

�t

yn+1
f

= yn
f

+ vn
f

�t

10

Direct Numerical Simulations of Multiphase Flows-5: Advecting the Marker Function using Front Tracking

x

f

(l) = (x(l), y(l)), l = 1,, N
f

�s
l,l�1 =

p

(x(l)� x(l � 1))2 + (y(l)� y(l � 1))2

i = FLOOR(x
f

(l)/�x) + 1

i = FLOOR((x
f

(l) + 0.5�x)/�x) + 1

�l

f

= �
i,j

(xi+1�xp

�x

)(yj+1�yp

�y

) + �
i,j+1(

xi+1�xp

�x

)(yp�yj

�y

)+

�
i+1,j(

xp�xi

�x

)(yj+1�yp

�y

) + �
i+1,j+1(

xp�xi

�x

)(yp�yj

�y

)

�l

f

= wl

i,j

�
i,j

+ wl

i,j+1�i,j+1 + wl

i+1,j�i+1,j + wl

i+1,j+1�i+1,j+1

X

i,j

wl

i,j

= 1

�l

f

=
X

ij

wl

i,j

�
i,j

�l

f

= �
i,j

⇣x
i+1 � x

p

�x

⌘⇣y
j+1 � y

p

�y

⌘

+ �
i,j+1

⇣x
i+1 � x

p

�x

⌘⇣y
p

� y
j

�y

⌘

+

�
i+1,j

⇣x
p

� x
i

�x

⌘⇣y
j+1 � y

p

�y

⌘

+ �
i+1,j+1

⇣x
p

� x
i

�x

⌘⇣y
p

� y
j

�y

⌘

w
i,j

=
⇣x

i+1 � x
p

�x

⌘⇣y
j+1 � y

p

�y

⌘

w
i,j+1 =

⇣x
i+1 � x

p

�x

⌘⇣y
p

� y
j

�y

⌘

w
i+1,j =

⇣x
p

� x
i

�x

⌘⇣y
j+1 � y

p

�y

⌘

w
i+1,j+1 =

⇣x
p

� x
i

�x

⌘⇣y
p

� y
j

�y

⌘

�s =

s

⇣x
j�1 � x

l

�x

⌘2
+

⇣y
j�1 � y

l

�y

⌘2

x

n+1
f

= x

n

f

+ u

n

f

�t

xn+1
f

= xn

f

+ un

f

�t

yn+1
f

= yn
f

+ vn
f

�t

13. Here we will move the front points in the simplest way possible and use an explicit first order, or
Euler, method where the new location of a front point is its old location plus its velocity times the time
step, delta t. Notice, that we generally move the points with the full velocity interpolated from the grid.
Strictly speaking we only need the normal velocity, since the tangential component only slides the point
along the interface without changing its location or shape.

DNS of Multiphase Flows — Simple Front Tracking

For the velocities we need to
interpolate each velocity component

Once we have found the velocities, we
can move the front by integrating

%================== ADVECT FRONT =====================
 for l=2:Nf+1
 ip=floor(xf(l)/dx)+1; jp=floor((yf(l)+0.5*dy)/dy)+1;
 ax=xf(l)/dx-ip+1;ay=(yf(l)+0.5*dy)/dy-jp+1;
 uf(l)=(1.0-ax)*(1.0-ay)*u(ip,jp)+ax*(1.0-ay)*u(ip+1,jp)+...
 (1.0-ax)*ay*u(ip,jp+1)+ax*ay*u(ip+1,jp+1);

 ip=floor((xf(l)+0.5*dx)/dx)+1; jp=floor(yf(l)/dy)+1;
 ax=(xf(l)+0.5*dx)/dx-ip+1;ay=yf(l)/dy-jp+1;
 vf(l)=(1.0-ax)*(1.0-ay)*v(ip,jp)+ax*(1.0-ay)*v(ip+1,jp)+...
 (1.0-ax)*ay*v(ip,jp+1)+ax*ay*v(ip+1,jp+1);
 end

 for i=2:Nf+1, xf(i)=xf(i)+dt*uf(i); yf(i)=yf(i)+dt*vf(i);end %MOVE THE FRONT
 xf(1)=xf(Nf+1);yf(1)=yf(Nf+1);xf(Nf+2)=xf(2);yf(Nf+2)=yf(2);

14. The code to move the interface points consists of two parts. First we interpolate the velocities from
the fixed grid and since the different components are located on different grids the simplest approach is
to interpolate them separately. For each interpolation we first identify the grid point to the left and
below the front point, then we find the area fraction corresponding to the location of the front point,
relative to the grid point, and then we interpolate, from the four closest grid points. Once the
interpolation is done, we can move the points to their new location, using a simple explicit first order
method. Later we will increase the accuracy of the advection to second order and obviously we could
implement an even higher order scheme, if we elected to do so.

DNS of Multiphase Flows — Simple Front Tracking

Add and delete
points

15. As the front points move, their spacing will generally become uneven. Some points will move apart
and some will come together. Since it is only the normal velocity of the points that matters, in
determining the new location of the interface, we can slide the points along the interface to attempt to
keep the interface resolution relatively uniform. Sometime, however, we need to add points if the
interface stretches and sometimes it makes sense to take out a point if they become too crowded.
Maintaining the distance between the grid points as uniform as possible can be done in many different
ways and for two-dimensional flow, almost any strategy that we choose can be made to work, relatively
easily.

DNS of Multiphase Flows — Simple Front Tracking

As the front points move, some
will move apart and others will
crowd together. Thus, we must
add and delete points. For a
string of ordered points this is
very simple:

We copy the points into a new
array and then copy them back
one by one, adding and
deleting points as needed

16-1. In our case, where the points are ordered, the updating becomes particularly simple. Here we
present an approach based on keeping the spacing relatively uniform by adding and deleting points as
needed, but leaving other points where they are. Leaving most of the points untouched should minimize
interpolation errors. Since we want to have about two to four front points per fixed grid cell, we add
points if the distance between two points is greater than half the cell size and we delete points if the
distance to the next point is smaller than a quarter of the cell size. We start by copying the point location
into a temporary array. We then put the first point back to where it was and then compute the distance
between the second and the first point, assuming that it is a straight line. Using the figure on the right
hand side of the slide as an example, we see that the distance falls between the minimum and the
maximum so we simply copy point number two back to where it was.

DNS of Multiphase Flows — Simple Front Tracking

As the front points move, some
will move apart and others will
crowd together. Thus, we must
add and delete points. For a
string of ordered points this is
very simple:

We copy the points into a new
array and then copy them back
one by one, adding and
deleting points as needed

16-2. Point number three, on the other hand, is too far away from point two, that we copied back into
the original array, so instead of copying it into the original array as point number three, we insert a new
point into the number three slot, taking the location of the new point as the average of new point
number two and old point number three. Then we compute the distance of the old point number three
from the new number three point and finding it to be acceptable, that is being between the minimum
and the maximum, we copy old point number three into the new array as point number four. The
distance of old point number four from new point number four is acceptable so it becomes new point
number five. However, old point number five is too close to new point number five, so it should be
deleted. This is accomplished by simply not copying it over into the new list and moving on to old point
number six. Its distance from the new point number five is fine so it is copied into the next open slot in
the new array, which is number six.

DNS of Multiphase Flows — Simple Front Tracking

As the front points move, some
will move apart and others will
crowd together. Thus, we must
add and delete points. For a
string of ordered points this is
very simple:

We copy the points into a new
array and then copy them back
one by one, adding and
deleting points as needed

16-3. We continue to copy the points over, one by one, adding points when the next old point is too far
away from the last new point and skipping old points if they are too close to the new points, until we
have examined all the old points.

DNS of Multiphase Flows — Simple Front Tracking

The code to add and delete points.
Here we add a point if the distance is
greater then /2 and delete it if the
distance is less than /4. Here:

%------------ Add points to the front ------------
 xfold=xf;yfold=yf; j=1;
 for l=2:Nf+1
 ds=sqrt(((xfold(l)-xf(j))/dx)^2 + ((yfold(l)-yf(j))/dy)^2);
 if (ds > 0.5)
 j=j+1;xf(j)=0.5*(xfold(l)+xf(j-1));yf(j)=0.5*(yfold(l)+yf(j-1));
 j=j+1;xf(j)=xfold(l);yf(j)=yfold(l);
 elseif (ds < 0.25)
 % DO NOTHING!
 else
 j=j+1;xf(j)=xfold(l);yf(j)=yfold(l);
 end
 end
 Nf=j-1;
 xf(1)=xf(Nf+1);yf(1)=yf(Nf+1);xf(Nf+2)=xf(2);yf(Nf+2)=yf(2);

10

Direct Numerical Simulations of Multiphase Flows-5: Advecting the Marker Function using Front Tracking

x

f

(l) = (x(l), y(l)), l = 1,, N
f

�s
l,l�1 =

p

(x(l)� x(l � 1))2 + (y(l)� y(l � 1))2

i = FLOOR(x
f

(l)/�x) + 1

i = FLOOR((x
f

(l) + 0.5�x)/�x) + 1

�l

f

= �
i,j

(
xi+1�xp

�x

)(
yj+1�yp

�y

) + �
i,j+1(

xi+1�xp

�x

)(
yp�yj

�y

)+

�
i+1,j(

xp�xi

�x

)(
yj+1�yp

�y

) + �
i+1,j+1(

xp�xi

�x

)(
yp�yj

�y

)

�l

f

= wl

i,j

�
i,j

+ wl

i,j+1�i,j+1 + wl

i+1,j�i+1,j + wl

i+1,j+1�i+1,j+1

X

i,j

wl

i,j

= 1

�l

f

=
X

ij

wl

i,j

�
i,j

�l

f

= �
i,j

⇣x
i+1 � x

p

�x

⌘⇣y
j+1 � y

p

�y

⌘

+ �
i,j+1

⇣x
i+1 � x

p

�x

⌘⇣y
p

� y
j

�y

⌘

+

�
i+1,j

⇣x
p

� x
i

�x

⌘⇣y
j+1 � y

p

�y

⌘

+ �
i+1,j+1

⇣x
p

� x
i

�x

⌘⇣y
p

� y
j

�y

⌘

w
i,j

=
⇣x

i+1 � x
p

�x

⌘⇣y
j+1 � y

p

�y

⌘

w
i,j+1 =

⇣x
i+1 � x

p

�x

⌘⇣y
p

� y
j

�y

⌘

w
i+1,j =

⇣x
p

� x
i

�x

⌘⇣y
j+1 � y

p

�y

⌘

w
i+1,j+1 =

⇣x
p

� x
i

�x

⌘⇣y
p

� y
j

�y

⌘

�s =

s

⇣x
new

� x
old

�x

⌘2
+

⇣y
new

� y
old

�y

⌘2

10

Direct Numerical Simulations of Multiphase Flows-5: Advecting the Marker Function using Front Tracking

x

f

(l) = (x(l), y(l)), l = 1,, N
f

�s
l,l�1 =

p

(x(l)� x(l � 1))2 + (y(l)� y(l � 1))2

i = FLOOR(x
f

(l)/�x) + 1

i = FLOOR((x
f

(l) + 0.5�x)/�x) + 1

�l

f

= �
i,j

(
xi+1�xp

�x

)(
yj+1�yp

�y

) + �
i,j+1(

xi+1�xp

�x

)(
yp�yj

�y

)+

�
i+1,j(

xp�xi

�x

)(
yj+1�yp

�y

) + �
i+1,j+1(

xp�xi

�x

)(
yp�yj

�y

)

�l

f

= wl

i,j

�
i,j

+ wl

i,j+1�i,j+1 + wl

i+1,j�i+1,j + wl

i+1,j+1�i+1,j+1

X

i,j

wl

i,j

= 1

�l

f

=
X

ij

wl

i,j

�
i,j

�l

f

= �
i,j

⇣x
i+1 � x

p

�x

⌘⇣y
j+1 � y

p

�y

⌘

+ �
i,j+1

⇣x
i+1 � x

p

�x

⌘⇣y
p

� y
j

�y

⌘

+

�
i+1,j

⇣x
p

� x
i

�x

⌘⇣y
j+1 � y

p

�y

⌘

+ �
i+1,j+1

⇣x
p

� x
i

�x

⌘⇣y
p

� y
j

�y

⌘

w
i,j

=
⇣x

i+1 � x
p

�x

⌘⇣y
j+1 � y

p

�y

⌘

w
i,j+1 =

⇣x
i+1 � x

p

�x

⌘⇣y
p

� y
j

�y

⌘

w
i+1,j =

⇣x
p

� x
i

�x

⌘⇣y
j+1 � y

p

�y

⌘

w
i+1,j+1 =

⇣x
p

� x
i

�x

⌘⇣y
p

� y
j

�y

⌘

�s =

s

⇣x
new

� x
old

�x

⌘2
+

⇣y
new

� y
old

�y

⌘2

10

Direct Numerical Simulations of Multiphase Flows-5: Advecting the Marker Function using Front Tracking

x

f

(l) = (x(l), y(l)), l = 1,, N
f

�s
l,l�1 =

p

(x(l)� x(l � 1))2 + (y(l)� y(l � 1))2

i = FLOOR(x
f

(l)/�x) + 1

i = FLOOR((x
f

(l) + 0.5�x)/�x) + 1

�l

f

= �
i,j

(
xi+1�xp

�x

)(
yj+1�yp

�y

) + �
i,j+1(

xi+1�xp

�x

)(
yp�yj

�y

)+

�
i+1,j(

xp�xi

�x

)(
yj+1�yp

�y

) + �
i+1,j+1(

xp�xi

�x

)(
yp�yj

�y

)

�l

f

= wl

i,j

�
i,j

+ wl

i,j+1�i,j+1 + wl

i+1,j�i+1,j + wl

i+1,j+1�i+1,j+1

X

i,j

wl

i,j

= 1

�l

f

=
X

ij

wl

i,j

�
i,j

�l

f

= �
i,j

⇣x
i+1 � x

p

�x

⌘⇣y
j+1 � y

p

�y

⌘

+ �
i,j+1

⇣x
i+1 � x

p

�x

⌘⇣y
p

� y
j

�y

⌘

+

�
i+1,j

⇣x
p

� x
i

�x

⌘⇣y
j+1 � y

p

�y

⌘

+ �
i+1,j+1

⇣x
p

� x
i

�x

⌘⇣y
p

� y
j

�y

⌘

w
i,j

=
⇣x

i+1 � x
p

�x

⌘⇣y
j+1 � y

p

�y

⌘

w
i,j+1 =

⇣x
i+1 � x

p

�x

⌘⇣y
p

� y
j

�y

⌘

w
i+1,j =

⇣x
p

� x
i

�x

⌘⇣y
j+1 � y

p

�y

⌘

w
i+1,j+1 =

⇣x
p

� x
i

�x

⌘⇣y
p

� y
j

�y

⌘

�s =

s

⇣x
j�1 � x

l

�x

⌘2
+

⇣y
j�1 � y

l

�y

⌘2

17. The code to accomplish this is relatively straightforward and consists of only a few lines. In the first
line we copy the vectors holding the x and y coordinates of the front into temporary files, called xold and
yold. We then loop over the old points, checking the distance between the last new and the next old
point. If the distance is too large we add a point, if it is too small we don’t copy the point and move on. If
neither of those hold, that is the distance is neither too large or too small, we copy the old point over. In
the last line we set the ghost points. I should emphasize that the simplicity of this algorithm is somewhat
deceiving since it is really uniquely designed for ordered points in two-dimensions. For unstructured
grids, as we generally need for the fully three-dimensional case, maintain the resolution is generally a
more complex task.

