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1. In this segment we continue to develop a front tracking method, based on advecting connected 
marker points. 

DNS of Multiphase Flows — Simple Front Tracking

In the last lecture we introduced a simple front tracking 
method and showed how to:

• Set up a front consisting of connected marker points
• Identify the points on the fixed grid that are closest to a 

given front point
• Interpolate the velocities on the fixed grid to the front
• Add and delete points to the front

Here we will:

• Construct a marker function from the new location of 
the front

• Replace the density advection used in the first version 
of our code with the front tracking

2. In the last lecture we started to develop a simple front tracking method, using ordered marker points. 
We showed how to set up the front for a closed interface, representing a bubble or a drop. We found a 
way to identify which points on the fixed grid are closest to a given front point, and we developed a 
strategy to interpolate the velocities on the fixed grid to the front and move the interface points once we 
had their velocities. We also introduced a simple way to add and delete marker points as the distance 
between them changes. Here we will construct a marker function from the new location of the front and 
then update the code we wrote for variable density flow by replacing the density advection scheme with 
the front tracking. 

DNS of Multiphase Flows — Simple Front Tracking

Constructing 
the marker 

function

3. Advecting the density by moving the points that mark the position of the interface between regions of 
different densities is a two-step process. First we move the marker points by the fluid velocity, 
interpolated from the grid, and then we construct the marker field on the grid, from the new location of 
the points. In the last lecture we moved the points and here we will create the marker and set the 
density.
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There are several ways to construct a marker function 
given the location of the interface

Generally the front moves less than a grid spacing so we 
only need to update points close to the interface

Usually we want the marker function to transition from one 
value to the other in a way that depends on the distance to 
the interface

The most straightforward approach is to loop over the 
interface points, find the closest points on the fixed grid 
and set their values depending on which side of the front it 
is and how far

4. There are several ways to construct a marker function given the location of the interface, but in all 
cases the easiest way is to loop over the interface points, find the closest points on the fixed grid and set 
their values, depending on whether they are on the right or left side of the front. Usually the front moves 
less than one grid spacing so we only need to update points close to the interface. We also generally 
want the marker function to transition from one value to the other in a smooth way that depends on the 
distance to the interface.

DNS of Multiphase Flows — Simple Front Tracking

To determine how the marker function value 
depends on the exact location of the interface and 
the distance to each grid point it is necessary to:

• Determine which part of the interface is closest to 
a given point on the fixed grid,

• Determine the distance from the interface to each 
point on the fixed grid,

• Decide how the marker value depends on the 
distance to the interface

We first look at the last issue

5. To determine how the marker function value depends on the exact location of the interface and the 
distance to each grid point, we need to determine which part of the interface is closest to a given point 
on the fixed grid, find the distance from the interface to each point on the fixed grid, and decide how 
the marker value depends on the distance to the interface. We first look at the last issue.
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To determine how the marker function value depends on the 
exact location of the interface and the distance to each grid 
point we first consider a one-dimensional grid:

If the front is in the middle, 
between two grid points, we 
can set the value to 0 on one 
side and 1 on the other

If the front is exactly at a grid 
point, it seems reasonable to 
set the indicator at that point to 
0.5 and 0 and 1 at the points 
on either side

Same as the first case but 
shifted to the right

j-1                j                j+1

j-1                j                j+1

j-1                j                j+1

6. The strategy that we use here is to simply set the markers at the grid points of the fixed grid based on 
their distance from the interface. To decide how the marker value depends on the distance, we start with 
a one-dimensional example. If the front is located exactly in the middle between two grid points, say j-1 
and j then it seems reasonable that the marker value at the grid point on one side is zero and the value 
at the point on the other side is one. Similarly, if the front is located exactly at grid point j, then we set 
the value there equal to a half and the values at j-1 to zero and at j+1 to one. If the front is moved further 
to the right, then eventually it is half way between j and j+1 and we treat it exactly the same as in the 
first case, except shifted one grid point to the right.
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For front at other locations we interpolate. If the signed distance 
of the front from grid point j is d, where d < 0 on the left and d > 0 
on the right, and        is the distance between the grid points:

j-1                j                j+1

j-1                j                j+1

Find the signed distance to 
grid point j

j-1                j                j+1
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Front points outside the 
vertical lines do not affect 
the value at grid point j

Then interpolate
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µ =

⇢

µ1 fluid 1
µ2 fluid 2

µ = �µ1 + (1� �)µ2 (32)

⇢ = �⇢1 + (1� �)⇢2
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7. If the front is neither half way between two grid points nor exactly at a grid point, the simplest 
approach is to interpolate linearly between the two cases. Thus, if d_j is the distance between the front 
point and grid point j and delta x is the grid spacing, then the value of the marker at grid point j is zero if 
d_j is less than negative half the grid spacing. If d_j is between negative delta x over 2 and positive delta 
x over 2 then the value is half plus d_j over delta x, and if d_j is greater than delta x over 2 then the 
marker function is equal to 1. Assuming that the motion of the front is always less than a grid spacing, 
then we need not concern us with points further away.
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Since we need the normal to the 
interface, we will work with the 
line segment between two front 
points, instead of the points.

In 2D we need to find the 
closest front point and set 
the marker based on the 
perpendicular distance

First we define the front point 
as the mid point of the segment 
 

Then we find the distance from 
the front point to each of the 
four closest grid points
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⇢ = �⇢1 + (1� �)⇢2

0.8. ADVECTING THE DENSITY: CENTERED DIFFERENCES WITH DIFFUSION 21

µ =

⇢

µ1 fluid 1
µ2 fluid 2

µ = �µ1 + (1� �)µ2 (32)

⇢ = �⇢1 + (1� �)⇢2

Scaled by grid spacing

d1 =

s

✓

x
f

� x
i,j

�x

◆2

+

✓

y
f

� y
i,j

�y

◆2

dn1 =

✓

x
f

� x
i,j

�x

◆

n
x

+

✓

y
f

� y
i,j

�y

◆

n
y

�
i,j

=

8

<

:

0 d1 < �1/2
1/2 + d1 |d1| < 1/2

1 d1 > 1/2

�x �y (i, j)

d1

d2

d3d4

0.8. ADVECTING THE DENSITY: CENTERED DIFFERENCES WITH DIFFUSION 21

µ =

⇢

µ1 fluid 1
µ2 fluid 2

µ = �µ1 + (1� �)µ2 (32)

⇢ = �⇢1 + (1� �)⇢2

Scaled by grid spacing

d1 =

s

✓

x
f

� x
i,j

�x

◆2

+

✓

y
f

� y
i,j

�y

◆2

dn1 =

✓

x
f

� x
i,j

�x

◆

n
x

+

✓

y
f

� y
i,j

�y

◆

n
y

�
i,j

=

8

<

:

0 d1 < �1/2
1/2 + d1 |d1| < 1/2

1 d1 > 1/2

�x �y (i, j)

0.8. ADVECTING THE DENSITY: CENTERED DIFFERENCES WITH DIFFUSION 21

µ =

⇢

µ1 fluid 1
µ2 fluid 2

µ = �µ1 + (1� �)µ2 (32)

⇢ = �⇢1 + (1� �)⇢2

Scaled by grid spacing

d1 =

s

✓

x
f

� x
i,j

�x

◆2

+

✓

y
f

� y
i,j

�y

◆2

dn1 =

✓

x
f

� x
i,j

�x

◆

n
x

+

✓

y
f

� y
i,j

�y

◆

n
y

�
i,j

=

8

<

:

0 d1 < �1/2
1/2 + d1 |d1| < 1/2

1 d1 > 1/2

�x �y (i, j)

0.8. ADVECTING THE DENSITY: CENTERED DIFFERENCES WITH DIFFUSION 21

µ =

⇢

µ1 fluid 1
µ2 fluid 2

µ = �µ1 + (1� �)µ2 (32)

⇢ = �⇢1 + (1� �)⇢2

Scaled by grid spacing

d1 =

s

✓

x
f

� x
i,j

�x

◆2

+

✓

y
f

� y
i,j

�y

◆2

dn1 =

✓

x
f

� x
i,j

�x

◆

n
x

+

✓

y
f

� y
i,j

�y

◆

n
y

�
i,j

=

8

<

:

0 d1 < �1/2
1/2 + d1 |d1| < 1/2

1 d1 > 1/2

�
i+1,j =

8

<

:

0 d2 < �1/2
1/2 + d1 |d2| < 1/2

1 d2 > 1/2

�
i+1,j+1 =

8

<

:

0 d3 < �1/2
1/2 + d3 |d3| < 1/2

1 d3 > 1/2

�
i,j+1 =

8

<

:

0 d4 < �1/2
1/2 + d4 |d4| < 1/2

1 d4 > 1/2

�x �y (i, j) (i+ 1, j) (i+ 1, j + 1) (i, j + 1)

0.8. ADVECTING THE DENSITY: CENTERED DIFFERENCES WITH DIFFUSION 21

µ =

⇢

µ1 fluid 1
µ2 fluid 2

µ = �µ1 + (1� �)µ2 (32)

⇢ = �⇢1 + (1� �)⇢2

Scaled by grid spacing

d1 =

s

✓

x
f

� x
i,j

�x

◆2

+

✓

y
f

� y
i,j

�y

◆2

dn1 =

✓

x
f

� x
i,j

�x

◆

n
x

+

✓

y
f

� y
i,j

�y

◆

n
y

�
i,j

=

8

<

:

0 d1 < �1/2
1/2 + d1 |d1| < 1/2

1 d1 > 1/2

�
i+1,j =

8

<

:

0 d2 < �1/2
1/2 + d1 |d2| < 1/2

1 d2 > 1/2

�
i+1,j+1 =

8

<

:

0 d3 < �1/2
1/2 + d3 |d3| < 1/2

1 d3 > 1/2

�
i,j+1 =

8

<

:

0 d4 < �1/2
1/2 + d4 |d4| < 1/2

1 d4 > 1/2

�x �y (i, j) (i+ 1, j) (i+ 1, j + 1) (i, j + 1)

0.8. ADVECTING THE DENSITY: CENTERED DIFFERENCES WITH DIFFUSION 21

µ =

⇢

µ1 fluid 1
µ2 fluid 2

µ = �µ1 + (1� �)µ2 (32)

⇢ = �⇢1 + (1� �)⇢2

Scaled by grid spacing

d1 =

s

✓

x
f

� x
i,j

�x

◆2

+

✓

y
f

� y
i,j

�y

◆2

dn1 =

✓

x
f

� x
i,j

�x

◆

n
x

+

✓

y
f

� y
i,j

�y

◆

n
y

�
i,j

=

8

<

:

0 d1 < �1/2
1/2 + d1 |d1| < 1/2

1 d1 > 1/2

�
i+1,j =

8

<

:

0 d2 < �1/2
1/2 + d1 |d2| < 1/2

1 d2 > 1/2

�
i+1,j+1 =

8

<

:

0 d3 < �1/2
1/2 + d3 |d3| < 1/2

1 d3 > 1/2

�
i,j+1 =

8

<

:

0 d4 < �1/2
1/2 + d4 |d4| < 1/2

1 d4 > 1/2

�x �y (i, j) (i+ 1, j) (i+ 1, j + 1) (i, j + 1)

0.8. ADVECTING THE DENSITY: CENTERED DIFFERENCES WITH DIFFUSION 21

µ =

⇢

µ1 fluid 1
µ2 fluid 2

µ = �µ1 + (1� �)µ2 (32)

⇢ = �⇢1 + (1� �)⇢2

Scaled by grid spacing

d1 =

s

✓

x
f

� x
i,j

�x

◆2

+

✓

y
f

� y
i,j

�y

◆2

dn1 =

✓

x
f

� x
i,j

�x

◆

n
x

+

✓

y
f

� y
i,j

�y

◆

n
y

�
i,j

=

8

<

:

0 d1 < �1/2
1/2 + d1 |d1| < 1/2

1 d1 > 1/2

�
i+1,j =

8

<

:

0 d2 < �1/2
1/2 + d1 |d2| < 1/2

1 d2 > 1/2

�
i+1,j+1 =

8

<

:

0 d3 < �1/2
1/2 + d3 |d3| < 1/2

1 d3 > 1/2

�
i,j+1 =

8

<

:

0 d4 < �1/2
1/2 + d4 |d4| < 1/2

1 d4 > 1/2

�x �y (i, j) (i+ 1, j) (i+ 1, j + 1) (i, j + 1)

0.8. ADVECTING THE DENSITY: CENTERED DIFFERENCES WITH DIFFUSION 21

µ =

⇢

µ1 fluid 1
µ2 fluid 2

µ = �µ1 + (1� �)µ2 (32)

⇢ = �⇢1 + (1� �)⇢2

Scaled by grid spacing

d1 =

s

✓

x
f

� x
i,j

�x

◆2

+

✓

y
f

� y
i,j

�y

◆2

dn1 =

✓

x
f

� x
i,j

�x

◆

n
x

+

✓

y
f

� y
i,j

�y

◆

n
y

�
i,j

=

8

<

:

0 d1 < �1/2
1/2 + d1 |d1| < 1/2

1 d1 > 1/2

�
i+1,j =

8

<

:

0 d2 < �1/2
1/2 + d1 |d2| < 1/2

1 d2 > 1/2

�
i+1,j+1 =

8

<

:

0 d3 < �1/2
1/2 + d3 |d3| < 1/2

1 d3 > 1/2

�
i,j+1 =

8

<

:

0 d4 < �1/2
1/2 + d4 |d4| < 1/2

1 d4 > 1/2

�x �y (i, j) (i+ 1, j) (i+ 1, j + 1) (i, j + 1)

x

l

x

l+1

0.8. ADVECTING THE DENSITY: CENTERED DIFFERENCES WITH DIFFUSION 21

µ =

⇢

µ1 fluid 1
µ2 fluid 2

µ = �µ1 + (1� �)µ2 (32)

⇢ = �⇢1 + (1� �)⇢2

Scaled by grid spacing

d1 =

s

✓

x
f

� x
i,j

�x

◆2

+

✓

y
f

� y
i,j

�y

◆2

dn1 =

✓

x
f

� x
i,j

�x

◆

n
x

+

✓

y
f

� y
i,j

�y

◆

n
y

�
i,j

=

8

<

:

0 d1 < �1/2
1/2 + d1 |d1| < 1/2

1 d1 > 1/2

�
i+1,j =

8

<

:

0 d2 < �1/2
1/2 + d1 |d2| < 1/2

1 d2 > 1/2

�
i+1,j+1 =

8

<

:

0 d3 < �1/2
1/2 + d3 |d3| < 1/2

1 d3 > 1/2

�
i,j+1 =

8

<

:

0 d4 < �1/2
1/2 + d4 |d4| < 1/2

1 d4 > 1/2

�x �y (i, j) (i+ 1, j) (i+ 1, j + 1) (i, j + 1)

x

l

x

l+1

Note that we use scaled distance 
since      can be different from

0.8. ADVECTING THE DENSITY: CENTERED DIFFERENCES WITH DIFFUSION 21

µ =

⇢

µ1 fluid 1
µ2 fluid 2

µ = �µ1 + (1� �)µ2 (32)

⇢ = �⇢1 + (1� �)⇢2

Scaled by grid spacing

d1 =

s

✓

x
f

� x
i,j

�x

◆2

+

✓

y
f

� y
i,j

�y

◆2

dn1 =

✓

x
f

� x
i,j

�x

◆

n
x

+

✓

y
f

� y
i,j

�y

◆

n
y

�
i,j

=

8

<

:

0 d1 < �1/2
1/2 + d1 |d1| < 1/2

1 d1 > 1/2

�x �y (i, j)

0.8. ADVECTING THE DENSITY: CENTERED DIFFERENCES WITH DIFFUSION 21

µ =

⇢

µ1 fluid 1
µ2 fluid 2

µ = �µ1 + (1� �)µ2 (32)

⇢ = �⇢1 + (1� �)⇢2

Scaled by grid spacing

d1 =

s

✓

x
f

� x
i,j

�x

◆2

+

✓

y
f

� y
i,j

�y

◆2

dn1 =

✓

x
f

� x
i,j

�x

◆

n
x

+

✓

y
f

� y
i,j

�y

◆

n
y

�
i,j

=

8

<

:

0 d1 < �1/2
1/2 + d1 |d1| < 1/2

1 d1 > 1/2

�x �y (i, j)

8. In two dimensions we need first of all to determine which part of the front is closest to a given grid 
point and then find the perpendicular distance to the interface. To make the computations of the normal 
as simple as possible, we will work with the segment between two front points and define the front point 
as the average of the end points. Since what matters when we set the values of the grid points is the 
relative distance compared to the grid size and we allow the grid spacing in x and y to be uneven, we 
will scale x and y distances separately by delta x and delta y. Thus, the relative distance from the red 
point on the front to the grid point in the lover left corner (i,j) is the square root of the square of x_f 
minus x(i,j) divided by delta x, plus the square of y_f minus y(i,j) divided by delta y. The distances to the 
other grid points are found in the same way.

DNS of Multiphase Flows — Simple Front Tracking

To find the perpendicular 
distance to each of the 
nearest grid points, we 
first find the normal to the 
front segment between 
front point l and l +1.
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The x and y separation, the length 
of the segment, and the normal are:

The scaled normal distance is 
then given by the dot product of 
the distance between the grid 
point and the front point and the 
normal vector
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9. To find the perpendicular distance from the front to each of the nearest grid points, we first find the 
normal to the front segment between front point i and i+1. Defining delta x_f and delta y_f as the 
differences between the endpoints of the segment, as shown in the slide, the normal is given by delta y-f 
comma minus delta x_f, divided by the length of the line segments, computed as square root of delta x_f 
squared plus delta y_f squared. The perpendicular relative distance between a given front point and the 
lower left hand corner point on the fixed grid (or point i,j), or dn-1, is then equal to the projection of the 
distance vector onto the normal, or x_f minus x(i,j), divided by delta x, times the x component of the 
normal plus y_f minus y(i,j) divided by delta y, times the y component of the normal.



DNS of Multiphase Flows — Simple Front Tracking

Although we use the front 
point closest to the given 
grid point, we set the 
marker based on the 
perpendicular distance
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In the actual code we update the 
marker only at grid points close 
to the interface, since points far 
away are not affected by the 
interface motion 

The other three grid points are 
update in the same way
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The perpendicular distance is:

And the marker value is:

10. Notice that the perpendicular distance is a signed quantity that is negative on one side of the 
interface and positive on the other. To update the value of the marker at each grid point we therefore set 
the marker to zero if the scaled distance is minus a half or less, one if the distance is more than a half, 
and if it is in between minus a half and plus a half, we interpolate and set it equal to half plus the 
distance. Here we show how we set the marker value for the lower left corner of the grid cell. The values 
for the other three grid points are set in the same way.

DNS of Multiphase Flows — Simple Front Tracking
%-------------- Update the marker function ---------------------
    d(2:nx+1,2:ny+1)=2;
    
    for l=2:Nf+1
      nfx=-(yf(l+1)-yf(l))/dx;   
      nfy=(xf(l+1)-xf(l))/dy;  % Normal vector
      ds=sqrt(nfx*nfx+nfy*nfy); nfx=nfx/ds; nfy=nfy/ds;
      xfront=0.5*(xf(l)+xf(l+1)); yfront=0.5*(yf(l)+yf(l+1));
      ip=floor((xfront+0.5*dx)/dx)+1; jp=floor((yfront+0.5*dy)/dy)+1;

      d1=sqrt(((xfront-  x(ip))/dx)^2+((yfront-  y(jp))/dy)^2);
      d2=sqrt(((xfront-x(ip+1))/dx)^2+((yfront-  y(jp))/dy)^2);
      d3=sqrt(((xfront-x(ip+1))/dx)^2+((yfront-y(jp+1))/dy)^2);
      d4=sqrt(((xfront-  x(ip))/dx)^2+((yfront-y(jp+1))/dy)^2);

      if d1<d(ip,jp), d(ip,jp)=d1;...
        dn1=(x(ip)-  xfront)*nfx/dx+(y(jp)-  yfront)*nfy/dy;
        chi(ip,jp)=    0.5*(1.0+sign(dn1)); 
        if abs(dn1)<0.5, chi(ip,jp)=   0.5+dn1; end;
      end
      if d2<d(ip+1,jp), d(ip+1,jp)=d2;...
        dn2=(x(ip+1)-xfront)*nfx/dx+(y(jp)-  yfront)*nfy/dy;
        chi(ip+1,jp)=  0.5*(1.0+sign(dn2));
        if abs(dn2)<0.5, chi(ip+1,jp)=  0.5+dn2; end;
      end
      if d3<d(ip+1,jp+1), d(ip+1,jp+1)=d3;...
        dn3=(x(ip+1)-xfront)*nfx/dx+(y(jp+1)-yfront)*nfy/dy;
        chi(ip+1,jp+1)=0.5*(1.0+sign(dn3)); 
        if abs(dn3)<0.5, chi(ip+1,jp+1)=0.5+dn3; end;
      end
      if d4<d(ip,jp+1), d(ip,jp+1)=d4;...
        dn4=(x(ip)-  xfront)*nfx/dx+(y(jp+1)-yfront)*nfy/dy;
        chi(ip,jp+1)=  0.5*(1.0+sign(dn4)); 
        if abs(dn4)<0.5, chi(ip,jp+1)=  0.5+dn4; end;
      end
    end

In the actual code, we loop over the front 
points and identify close grid points. 

1. First define a distance vector for all the 
grid points and initialize it by some value 
larger than twice the grid spacing.

2. Within the loop find the grid points close 
to a given front point, defined as the 
average of the endpoints of a given 
segment

3. Compute the distance between the front 
point and each grid point

4. For each grid point we check if the 
distance from the front point is smaller than 
what has already been found. If it is 
smaller we first set the marker value to 
either zero or one, depending on the sign 
of the perpendicular distance. If the 
absolute value of the scaled perpendicular 
distance is less than a half, we interpolate. 

11. A code to update the marker function next to the front is all contained in one loop over the front 
points. First we set the scaled distance from the front equal to a large value for all points of the fixed 
grid. This is simply an initial guess that will be updated. In the second step we find the normal vector and 
the midpoint of the front element. Then we compute the distance to the four grid points surrounding the 
front point. For each grid point we check if the distance from the front point is smaller than what has 
already been found. If it is smaller, we first set the marker value to either zero or one, depending on the 
sign of the perpendicular distance, and if the absolute value of the scaled perpendicular distance is less 
than a half, we interpolate. 

DNS of Multiphase Flows — Simple Front Tracking

Once we have found the 
values of the marker 
function, the various 
material properties are 
set as functions of the 
marker. Here we assume 
a simple linear 
dependency and set the 
density by:

In principle we only need 
to update the values near 
the interface but here we 
loop over the whole 
domain to simplify the 
programming.

Thus, we can set:

    for i=2:nx+1,for j=2:ny+1
       r(i,j)=rho1+(rho2-rho1)*xi(i,j);
    end,end
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The code

12. Once the marker function has been constructed from the location of the front, we can set the various 
material properties as functions of the marker values. Here we assume a simple linear dependency and 
set the density as the marker function times density in fluid one, where the marker is one, plus one minus 
the marker times the density in fluid 2, where the marker is zero. In principle we only need to update the 
values near the interface but here we loop over the whole domain to simplify the programming. If we use 
the density as the marker function, then we obviously can skip this step.



DNS of Multiphase Flows — Simple Front Tracking

The Code

13. We can now modify our code and replace the simple advection equation for the density by the front 
tracking approach.

DNS of Multiphase Flows — Simple Front Tracking

We are now ready to replace the simple advection of 
the density used in the original flow solver with the 
front tracking code. The new parts are:
• The setup of the front
• The interpolation of the grid velocity to the front and 

the advection of the front
• The adding and deletion of points to keep the 

resolution reasonably uniform
• The construction of a marker function from the 

location of the front
• Update of the material properties at the new time

14. To do so we need to add four new parts. The first is the setup or the initialization of the front; then 
we need to interpolate the grid velocity to the front and advect the front; and after that we construct the 
marker function from the location of the front. Finally we need to add and delete points at the front to 
keep the resolution reasonably uniform.

DNS of Multiphase Flows — Simple Front Tracking

Code added for the 
front tracking

%===============================================================
% CodeC2-frt.m
% A very simple Navier-Stokes solver for a drop falling in a
% rectangular box, using a conservative form of the equations. 
% A first-order explicit projection method and centered in space 
% discretizationa are used. The marker function is advected by 
% Tront Tracking. Last edited 7/6/2016
%===============================================================

Lx=1.0;Ly=1.0;gx=0.0;gy=-100.0; rho1=1.0; rho2=2.0; % Domain size and
m0=0.01;                                            % physical variables
unorth=0;usouth=0;veast=0;vwest=0;time=0.0; 
rad=0.15;xc=0.5;yc=0.7; % Initial drop size and location

%-------------------- Numerical variables ----------------------
nx=32;ny=32;dt=0.00125;nstep=400; maxit=200;maxError=0.001;beta=1.5; Nf=100;

%-------------------- Zero various arrys -----------------------
u=zeros(nx+1,ny+2);  v=zeros(nx+2,ny+1);  p=zeros(nx+2,ny+2);
ut=zeros(nx+1,ny+2); vt=zeros(nx+2,ny+1); tmp1=zeros(nx+2,ny+2); 
uu=zeros(nx+1,ny+1); vv=zeros(nx+1,ny+1); tmp2=zeros(nx+2,ny+2);
r=zeros(nx+2,ny+2); chi=zeros(nx+2,ny+2);
xf=zeros(1,Nf+2); yf=zeros(1,Nf+2); 
uf=zeros(1,Nf+2); vf=zeros(1,Nf+2);
dx=Lx/nx;dy=Ly/ny;                          % Set the grid 
for i=1:nx+2; x(i)=dx*(i-1.5);end; for j=1:ny+2; y(j)=dy*(j-1.5);end;

%-------------------- Initial Conditions -----------------------
r=zeros(nx+2,ny+2)+rho1;                       % Set density
for i=2:nx+1,for j=2:ny+1;                     % for the domain and the drop
  if((x(i)-xc)^2+(y(j)-yc)^2 <rad^2),r(i,j)=rho2;chi(i,j)=1.0;end, 
end,end
                                          
for l=1:Nf+2, xf(l)=xc-rad*sin(2.0*pi*(l-1)/(Nf));      % Initialize 
              yf(l)=yc+rad*cos(2.0*pi*(l-1)/(Nf));end   % the Front
                                          
hold off,contour(x,y,flipud(rot90(chi))),axis equal,axis([0 Lx 0 Ly]);
hold on;plot(xf(1:Nf),yf(1:Nf),'k','linewidth',3);pause(0.01)               

%---------------------- START TIME LOOP ------------------------
for is=1:nstep,is

%---------------------- Advect the Front -----------------------
for l=2:Nf+1                       % Interpolate the Front Velocities
      ip=floor(xf(l)/dx)+1; jp=floor((yf(l)+0.5*dy)/dy)+1;
      ax=xf(l)/dx-ip+1;ay=(yf(l)+0.5*dy)/dy-jp+1;    
      uf(l)=(1.0-ax)*(1.0-ay)*u(ip,jp)+ax*(1.0-ay)*u(ip+1,jp)+...
              (1.0-ax)*ay*u(ip,jp+1)+ax*ay*u(ip+1,jp+1);

      ip=floor((xf(l)+0.5*dx)/dx)+1; jp=floor(yf(l)/dy)+1;
      ax=(xf(l)+0.5*dx)/dx-ip+1;ay=yf(l)/dy-jp+1;
      vf(l)=(1.0-ax)*(1.0-ay)*v(ip,jp)+ax*(1.0-ay)*v(ip+1,jp)+...
              (1.0-ax)*ay*v(ip,jp+1)+ax*ay*v(ip+1,jp+1);
    end     

    for i=2:Nf+1, xf(i)=xf(i)+dt*uf(i); yf(i)=yf(i)+dt*vf(i);end % Move the
    xf(1)=xf(Nf+1);yf(1)=yf(Nf+1);xf(Nf+2)=xf(2);yf(Nf+2)=yf(2); % Front
 

%-------------- Update the marker function ---------------------
    d(2:nx+1,2:ny+1)=2*max(dx,dy); dh=min(dx,dy);

    for l=1:Nf
      nfx=-(yf(l+1)-yf(l));   
      nfy=(xf(l+1)-xf(l));  % Normal vector
      ds=sqrt(nfx*nfx+nfy*nfy); nfx=nfx/ds; nfy=nfy/ds;
      xfront=0.5*(xf(l)+xf(l+1)); yfront=0.5*(yf(l)+yf(l+1));
      ip=floor((xfront+0.5*dx)/dx)+1; jp=floor((yfront+0.5*dy)/dy)+1;

      d1=sqrt((xfront-x(ip))^2  +(yfront-y(jp))^2);
      d2=sqrt((xfront-x(ip+1))^2+(yfront-y(jp))^2);
      d3=sqrt((xfront-x(ip+1))^2+(yfront-y(jp+1))^2);
      d4=sqrt((xfront-x(ip))^2  +(yfront-y(jp+1))^2);

      if d1<d(ip,jp), d(ip,jp)=d1;...
        dn1=(x(ip)-  xfront)*nfx+(y(jp)-  yfront)*nfy;
        chi(ip,jp)=    0.5*(1.0+sign(dn1)); 
        if abs(dn1)<0.5*dh, chi(ip,jp)=   0.5+(dn1/dh); end;
      end
      if d2<d(ip+1,jp), d(ip+1,jp)=d2;...
        dn2=(x(ip+1)-xfront)*nfx+(y(jp)-  yfront)*nfy;
        chi(ip+1,jp)=  0.5*(1.0+sign(dn2));
        if abs(dn2)<0.5*dh, chi(ip+1,jp)=  0.5+(dn2/dh); end;
      end
      if d3<d(ip+1,jp+1), d(ip+1,jp+1)=d3;...
        dn3=(x(ip+1)-xfront)*nfx+(y(jp+1)-yfront)*nfy;
        chi(ip+1,jp+1)=0.5*(1.0+sign(dn3)); 
        if abs(dn3)<0.5*dh, chi(ip+1,jp+1)=0.5+(dn3/dh); end;
      end
      if d4<d(ip,jp+1), d(ip,jp+1)=d4;...
        dn4=(x(ip)-  xfront)*nfx+(y(jp+1)-yfront)*nfy;
        chi(ip,jp+1)=  0.5*(1.0+sign(dn4)); 
        if abs(dn4)<0.5*dh, chi(ip,jp+1)=  0.5+(dn4/dh); end;
      end
    end
              
%-------------------- Update the density -----------------------
    ro=r;
    for i=1:nx+2,for j=1:ny+2
      r(i,j)=rho1+(rho2-rho1)*chi(i,j);
    end,end 

%------------- Set tangential velocity at boundaries -----------      
    u(1:nx+1,1)=2*usouth-u(1:nx+1,2);u(1:nx+1,ny+2)=2*unorth-u(1:nx+1,ny+1);
    v(1,1:ny+1)=2*vwest-v(2,1:ny+1);v(nx+2,1:ny+1)=2*veast-v(nx+1,1:ny+1);

%-------------- Find the predicted velocities ------------------      
    for i=2:nx,for j=2:ny+1      % Temporary u-velocity
      ut(i,j)=(2.0/(r(i+1,j)+r(i,j)))*(0.5*(ro(i+1,j)+ro(i,j))*u(i,j)+ dt* (...
      -(0.25/dx)*(ro(i+1,j)*(u(i+1,j)+u(i,j))^2-ro(i,j)*(u(i,j)+u(i-1,j))^2)...
      -(0.0625/dy)*( (ro(i,j)+ro(i+1,j)+ro(i,j+1)+ro(i+1,j+1))*...
                                       (u(i,j+1)+u(i,j))*(v(i+1,j)+v(i,j)) ...
      -(ro(i,j)+ro(i+1,j)+ro(i+1,j-1)+ro(i,j-1))*(u(i,j)...
                                       +u(i,j-1))*(v(i+1,j-1)+v(i,j-1)))...
      +m0*((u(i+1,j)-2*u(i,j)+u(i-1,j))/dx^2+ (u(i,j+1)-2*u(i,j)+u(i,j-1))/dy^2)...
                               + 0.5*(ro(i+1,j)+ro(i,j))*gx ) );
    end,end

    for i=2:nx+1,for j=2:ny       % Temporary v-velocity 
      vt(i,j)=(2.0/(r(i,j+1)+r(i,j)))*(0.5*(ro(i,j+1)+ro(i,j))*v(i,j)+ dt* (...     
      -(0.0625/dx)*( (ro(i,j)+ro(i+1,j)+ro(i+1,j+1)+ro(i,j+1))*...
                                        (u(i,j)+u(i,j+1))*(v(i,j)+v(i+1,j)) ...
                  - (ro(i,j)+ro(i,j+1)+ro(i-1,j+1)+ro(i-1,j))*...
                                    (u(i-1,j+1)+u(i-1,j))*(v(i,j)+v(i-1,j)) )...                                 
      -(0.25/dy)*(ro(i,j+1)*(v(i,j+1)+v(i,j))^2-ro(i,j)*(v(i,j)+v(i,j-1))^2 )...
      +m0*((v(i+1,j)-2*v(i,j)+v(i-1,j))/dx^2+(v(i,j+1)-2*v(i,j)+v(i,j-1))/dy^2)...
                               + 0.5*(ro(i,j+1)+ro(i,j))*gy  ) );    
    end,end   

%------------------ Solve the Pressure Equation ----------------    
    rt=r; lrg=1000;   % Compute source term and the coefficient for p(i,j)
    rt(1:nx+2,1)=lrg;rt(1:nx+2,ny+2)=lrg;
    rt(1,1:ny+2)=lrg;rt(nx+2,1:ny+2)=lrg;

    for i=2:nx+1,for j=2:ny+1
      tmp1(i,j)= (0.5/dt)*( (ut(i,j)-ut(i-1,j))/dx+(vt(i,j)-vt(i,j-1))/dy );
      tmp2(i,j)=1.0/( (1./dx)*(1./(dx*(rt(i+1,j)+rt(i,j)))+   ...
                               1./(dx*(rt(i-1,j)+rt(i,j))) )+ ...
                      (1./dy)*(1./(dy*(rt(i,j+1)+rt(i,j)))+   ...
                               1./(dy*(rt(i,j-1)+rt(i,j))) )   );
    end,end

    for it=1:maxit                % Solve for pressure by SOR
      oldArray=p;
      for i=2:nx+1,for j=2:ny+1
        p(i,j)=(1.0-beta)*p(i,j)+beta* tmp2(i,j)*(        ...
        (1./dx)*( p(i+1,j)/(dx*(rt(i+1,j)+rt(i,j)))+      ...
                  p(i-1,j)/(dx*(rt(i-1,j)+rt(i,j))) )+ ...
        (1./dy)*( p(i,j+1)/(dy*(rt(i,j+1)+rt(i,j)))+      ...
                  p(i,j-1)/(dy*(rt(i,j-1)+rt(i,j))) ) - tmp1(i,j));
      end,end
      if max(max(abs(oldArray-p))) <maxError, break, end
    end
                                      
    for i=2:nx,for j=2:ny+1   % Correct the u-velocity 
      u(i,j)=ut(i,j)-dt*(2.0/dx)*(p(i+1,j)-p(i,j))/(r(i+1,j)+r(i,j));
    end,end
      
    for i=2:nx+1,for j=2:ny   % Correct the v-velocity
      v(i,j)=vt(i,j)-dt*(2.0/dy)*(p(i,j+1)-p(i,j))/(r(i,j+1)+r(i,j));
    end,end

%--------------- Add and deleate points in the Front -----------
  xfold=xf;yfold=yf; j=1;
  for l=2:Nf+1
    ds=sqrt( ((xfold(l)-xf(j))/dx)^2 + ((yfold(l)-yf(j))/dy)^2);
    if (ds > 0.5)
      j=j+1;xf(j)=0.5*(xfold(l)+xf(j-1));yf(j)=0.5*(yfold(l)+yf(j-1));
      j=j+1;xf(j)=xfold(l);yf(j)=yfold(l);
    elseif (ds < 0.25)
       % DO NOTHING!
    else
      j=j+1;xf(j)=xfold(l);yf(j)=yfold(l);
    end    
  end
  Nf=j-1;
  xf(1)=xf(Nf+1);yf(1)=yf(Nf+1);xf(Nf+2)=xf(2);yf(Nf+2)=yf(2);

%------------------ Plot the results ---------------------------
  time=time+dt                   % plot the results
  uu(1:nx+1,1:ny+1)=0.5*(u(1:nx+1,2:ny+2)+u(1:nx+1,1:ny+1));
  vv(1:nx+1,1:ny+1)=0.5*(v(2:nx+2,1:ny+1)+v(1:nx+1,1:ny+1));
  for i=1:nx+1,xh(i)=dx*(i-1);end;     for j=1:ny+1,yh(j)=dy*(j-1);end
  hold off,contour(x,y,flipud(rot90(r))),axis equal,axis([0 Lx 0 Ly]);
  hold on;quiver(xh,yh,flipud(rot90(uu)),flipud(rot90(vv)),'r');
  plot(xf(1:Nf),yf(1:Nf),'k','linewidth',5);pause(0.01)

end                  % End of time step

15. The full code is shown in this slide, where the new parts are identified by the gray background. The 
setup of the front is the few lines on the gray background in the first column, followed by the 
interpolation of the interface velocity and the advection of the interface points at the bottom. The 
construction of the marker function is the gray code in the middle column, and the restructuring of the 
front by adding and deleting points is the gray code in the third column. I note that we loop over the 
front, both when we find the velocities at the interface points as well as when we construct the marker 
function.
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16. We test the new code on the same problem used already and consider a drop falling under gravity. 
The front and the velocity is shown at two times in the two frames on the left and the frame on the right 
shows the marker at the later time, using a three-dimensional view. It is clear that the marker is constant 
in each fluid and that the interface is reasonably thin. Since the surface tension is zero the drop will keep 
deforming if we followed it further and once it has deformed to a point where it is so thin that its 
thickness is comparable to the grid spacing then obviously the marker field will deteriorate. In the 
absence of such problems, however, the front tracking will allow us to keep the marker, and thus the 
density, sharp for essentially all times.

DNS of Multiphase Flows — Simple Front Tracking

The approach described here works 
well for smooth interfaces that are 
far from other interfaces

The transition zone can be made 
smoother by consider points further 
away from the interface.

For complex problems where two 
interface come very close, such as 
shown here, we need a more 
sophisticated strategy. 

Several techniques exist to construct the marker function 
from the front location. Some of those will be reviewed later

17. Constructing the marker function or the density, given the interface, can obviously be done in several 
different ways. One of the main considerations is that we need to be able to treat interfaces that are very 
close to each other, in a reasonable way. Consider the thin neck in the figure. If we looped over the 
interface points and set the marker function on one side of the front, at the gray grid point on the right, 
for example, to one value and to a different value on the other side, we would find that the marker 
function at the grid points to the left would have one value when we move up the front and a different 
value when we come down the front on the other sider. This is not an issue for the single drop we are 
working with here, so our simple approach works fine, but something to be aware of for more complex 
problems. A couple of techniques to deal with this issue will be reviewed later. I also note that is some 
cases it is beneficial to use a smoother transition zone between the fluids, and again, I will discuss that 
later.

DNS of Multiphase Flows — Simple Front Tracking

Here we introduce a very simple front tracking code, but it 
still remains incomplete. In particular, so far the viscosity of 
both fluids are the same and the surface tension is zero

In the following lectures we will make it more complete by:

Adding surface tension 

Allowing the viscosities to be different

Make the code higher order in time

We will continue to focus on two-dimensional flows, since 
most of the concepts can be explained more easily there. 
Fully three-dimensional flows will be considered later.

18. In these lectures we introduce a very simple front tracking code and although it works well, it still is 
incomplete. We have, in particular, assumed that the viscosities of both fluids are the same and the 
surface tension is zero. In the next lectures I will allow the viscosities to be different, add surface tension, 
and make the time integration higher order. We will continue to focus on two-dimensional flows, since 
most of the concepts can be explained more easily there, but extensions to fully three-dimensional flows 
are relatively straightforward.


