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1. We start our development of a numerical method for simulations of multifluid and multiphase flows by a 
short discussion of the governing equations.

DNS of Multiphase Flows

Here we will focus on:

Incompressible isothermal flow

The “one-fluid” formulation of the governing 
equations

2. The development described here focuses on incompressible flows, since for many problems of 
practical interest this is an excellent approximation, and we start by developing a method for isothermal 
flows. The governing equations can be written in many different forms and those different forms provide 
the natural starting point for different numerical methods. Here, we will focus on the integral form of the 
equations and the so-called single fluid formulation where we write one set of equations for the whole 
flow field, including the different fluids.

DNS of Multiphase Flows

Governing 
Equations

3. We start by a summary of the derivation of the governing equations.
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The flow is predicted using the governing physical principles:

Conservation of mass. If the density of a material particle does 
not change, we have incompressible flow

Conservation of momentum. For incompressible flow the 
pressure is adjusted to enforce conservation of volume

Conservation of energy. For isothermal flow as we will be 
concerned with here, the energy equation is not needed 

Geometric relationships that specify the motion of fluid 
particles. For flow consisting of two or more fluids where each 
fluid has constant properties, we only need to know how the 
interface moves

4. The governing equations are mathematical statements of the physical principles that we use to predict 
the evolution of the flow. For fluid mechanics problems we generally use the principle of conservation of 
mass, conservation of momentum and conservation of energy. Here we assume that the density of a 
material particle does not change as its location changes and this leads to incompressible flow, where the 
volume of any small fluid blob remains constant. For incompressible flows the pressure, used in the 
momentum equations, has a special role, since it must take on whatever value needed to enforce 
incompressibility. For isothermal flow the special role of the pressure allows us to leave out the energy 
equation but for problems where the temperature changes, we will need to bring it back. For flows 
consisting of two fluids with different properties we also need to solve an equation specifying what part of 
the domain is occupied by which fluid, or where the interface separating the different fluids, is.
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Control 
volume V

Control 
surface S

Conservation of mass
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Using the divergence theorem and that the control volume is fixed in space so the time derivative can be moved
under the integral sign, the mass conservation equation equation can be written as

Z

V

⇣@⇢

@t
+r · ⇢u

⌘

dv = 0

or, expanding the divergence

Z

V

⇣@⇢

@t
+ u ·r⇢+ ⇢r · u

⌘

dv = 0

The first two terms are the convective derivative
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which obviously states that the volume inflow into a control volume is balanced by the outflow for incompressible
flows.
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The increase of mass 
inside a control volume is 
equal to the net inflow of 
mass (inflow minus 
outflow). The normal is 
the outward pointing 
normal so inflow is 
negative and outflow is 
positive:

Notice that the control 
volume may contain an 
interface separating fluids 
with different material 
properties, such as density. 

Normal 
vector n

Interface, 
separating 
different fluids

u

5. The conservation of mass equation is derived by applying the conservation of mass principle to a small 
control volume. Consider a control volume, fixed in space and of a arbitrary but fixed shape. We denote 
the control volume by V and the control surface which separates the control volume from its surrounding 
by S. The mass conservation principle states that the rate of change of the total mass in the control 
volume, the time derivative of the integral of the density over the control volume, is equal to the net in or 
outflow into the control volume, represented by the surface integral of density times the normal velocity. 
Since we take the normal to be positive pointing outward and inflow adds to mass and outflow decreases 
the mass, we need a minus sign in front of the surface integral. Notice that the control volume can 
contain an interface so the density can be different on different parts of the control surface. 
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The divergence (or Gauss’s) theorem can be used to 
convert surface integrals to volume integrals and vice 
versa.  

Applying it to the right hand side of the mass 
conservation equation gives 

or, bringing the time derivative under the integral and 
collecting all terms under one integral sign
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⇢ = H⇢1 + (1�H)⇢2

µ = Hµ1 + (1�H)µ2
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The momentum equation is given by the same considerations. The rate of change in momentum in a control
volume is the di↵erence in the inflow and outflow of momentum, plus surface and volume forces.
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The body force term generally includes gravity, but can also include other forces. Here, surface tension is
treated as a body force so we write
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Using the divergence theorem and that the control volume is fixed in space so the time derivative can be moved
under the integral sign, the mass conservation equation equation can be written as s
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The first two terms are the convective derivative

6. Using the divergence theorem and that the control volume is fixed in space, so the time derivative can 
be moved under the integral sign, the mass conservation equation can be written as one volume integral 
over the rate of change of the density plus the divergence of the mass flux, or the density times the 
velocity. 
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The mass conservation equation equation is
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Volume is 
conserved!

7. We then expand the divergence and realizing that the first two terms are the convective derivative—
partial rho with respect to time plus the velocity times the gradient of rho—so we can write the 
conservation of mass equation as the volume integral of the convective derivative of rho, divided by rho, 
plus the divergence of the velocity. If the density of a material particle remains constant, as it does for 
incompressible flows, then the first term is zero and we are left with the volume integral of the divergence 
of the velocity being equal to zero. Applying the divergence theorem, this can be restated as the surface 
integral over the control surface of the normal velocity being equal to zero. Or, the volume inflow into a 
control volume is balanced by the outflow for incompressible flows.
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Using the divergence theorem and that the control volume is fixed in space so the time derivative can be moved
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The momentum equation is given by the same considerations. The rate of change in momentum in a control
volume is the di↵erence in the inflow and outflow of momentum, plus surface and volume forces.
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Incompressible, Newtonian fluid

8. The momentum equation is derived in the same way. We focus on an arbitrary control volume, of a 
fixed shape and fixed in space. The rate of change of momentum in the control volume is given by the net 
inflow of momentum—the first term on the left where rho u is the momentum and multiplying that by the 
normal velocity gives the flux through the boundary—plus surface and volume forces, given by the 
second and third term. For the surface forces we assume a Newtonian fluid where the stress is given by 
the pressure, acting normal to the control surface plus the viscous stresses given by the viscosity time 
the rate of deformation tensor, which is the symmetric part of the velocity gradient tensor. The full stress 
tensor also has stresses from compressing the fluid but for incompressible fluid this is zero and is 
therefore not included here.

DNS of Multiphase Flows

The body force term generally includes gravity, but can 
also include other forces. Here, surface tension is 
treated as a body force so we write:
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Using the divergence theorem and that the control volume is fixed in space so the time derivative can be moved
under the integral sign, the mass conservation equation equation can be written as
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The evaluation of the gravity term is straightforward and 
how to find the surface tension is discussed below.

9. The body force generally includes gravity, and for immiscible multiphase flows we usually also have 
surface tension. We will give the specific form for the surface tension shortly, but here simply split the 
body force into two parts. For more complex situations we can have additional body forces, such as due 
to electric or magnetic forces, or we may have body forces such as centripetal and Coriolis forces that 
appear because we are in moving frame of reference.
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Using the divergence theorem and that the control volume is fixed in space so the time derivative can be moved
under the integral sign, the mass conservation equation equation can be written as
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flows.
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For two-dimensional flow, tension on the interface is given simply by
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The force on a control volume enclosing a 
segment of the interface is the difference 
in the tension where the interface enter 
the control volume and where it exists

Notice that      is the total force on the control 
volume due to the tension in the interface
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Assuming 
constant 
surface 
tension 𝜎. 

10. For two-dimensional flow, tension on the interface is given simply by sigma times the tangent vector, 
here denoted by bold lowercase t. The force on a control volume enclosing a segment of the interface is 
the difference in the tension where the interface enter the control volume and where it exists, or sigma t at 
2 minus sigma t at 1. We can represent the total force on the control volume in several ways. We will, in 
particular, use that the difference in sigma t at the endpoints can be written as an integral over the part of 
the interface that is inside the control volume, which we denote by delta S. Using that the derivative of the 
tangent vector with respect to arch length s, gives the curvature times the normal to the interface, bold n, 
and taking the surface tension to be constant, we can write the total force as the integral of sigma times 
the curvature times the normal, over the part of the interface that is inside the control volume.
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Multiply by a one dimensional delta 
function and integrate over the 
control volume to get the total surface 
force on the control volume

The different ways in which we can write the surface force 
leads to different numerical approximations and in the 
numerical code we will write we will use a different form.
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11. We can convert the integral over the part of the interface inside the control volume to an integral over 
the control volume by multiplying by a one dimensional delta function that is zero everywhere except at 
the interface. Although we will not use this form for the numerical code, it is very common and sometimes 
useful in theoretical discussions, such as those at the end of this lecture.
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The material properties are 
functions of the marker function

We are concerned with the flow of two or more fluids with 
different properties, such as density and viscosity. 

For immiscible fluids, the interface separating the different 
fluids remains sharp for all time.

Identify each fluid by a marker function H

2
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H(x) =

⇢

1 in fluid 1
0 in fluid 2

h

�p+ µ
⇣

ru+ u
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= 0

u = Hu1 + u2(1�H)

p = Hp1 + (1�H)p2

⇢ = H⇢1 + (1�H)⇢2 (6)

H(x)(. . .) + (1�H(x))(. . .) + �(x
f

)(. . .)

—————————– Governing Equations——————————————-

0.1 Governing Equations

The momentum equation for variable density and viscosity is:
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—————————– LECTURE 2 ——————————————–

⇢ = H⇢1 + (1�H)⇢2

µ = Hµ1 + (1�H)µ2
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The momentum equation is given by the same considerations. The rate of change in momentum in a control
volume is the di↵erence in the inflow and outflow of momentum, plus surface and volume forces.
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Here the surface forces are found using the stress tensor
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Using the divergence theorem and that the control volume is fixed in space so the time derivative can be moved
under the integral sign, the mass conservation equation equation can be written as

Z

V

⇣@⇢

@t
+r · ⇢u

⌘

dv = 0

or, expanding the divergence

Z

V

⇣@⇢

@t
+ u ·r⇢+ ⇢r · u

⌘

dv = 0

The first two terms are the convective derivative

D⇢

@t
=

@⇢

@t
+ u ·r⇢

So we can write

Z

V

⇣1

⇢

D⇢

Dt
+r · u

⌘

dv = 0

and if D⇢/Dt = 0 we have:

Z

V

r · udv = 0

or

I

S

u · nds = 0

which obviously states that the volume inflow into a control volume is balanced by the outflow for incompressible
flows.

—————————————————-SURFACE TENSION—————-
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12. For flows with two or more fluids of different but constant properties we generally need to know what 
fluid is where. Thus, we need a marker function that is updated as the flow evolves. The various material 
properties can then be set as functions of the marker function. For two fluids we use a step function that 
is one in one fluid and zero in the other and the properties take one of two possible values.
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13. To update the marker function we start with the mass conservation equation and substitute the 
expression for density as a function of the marker function. Using that the convective derivative of the 
densities is zero, we immediately get that the marker function is governed by the same equation, namely 
that the convective derivative is zero, or the marker moves with the fluid. That is, of course, something 
that we could have seen coming. If the material properties are constant in each fluid, as is the case here, 
the advection of the marker function becomes considerably simpler and we only need to know where the 
interface is.
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Motion of the indicator function and updating properties

Conservation of volume (from the mass conservation 
equation since the flow is incompressible)

Momentum conservation (the Navier-Stokes equations)

V: Control volume
S: Control surface

Summary: the governing equations in integral form.
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—————————————————-SURFACE TENSION—————-
For two-dimensional flow, tension on the interface is given simply by
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14. To sum up, the equations that we will be solving are the momentum equations for the two velocity 
components, subject to the constrain that the fluid are incompressible so that the volume flow in and out 
of a control volume balances, and the advection equation for the marker function, which will then give the 
material properties of the fluid.

DNS of Multiphase Flows

• The conservation equations for mass and momentum 
apply to any flow situation, including flows of multiple 
immiscible fluids.  

• Each fluid generally has properties that are different from 
the other constituents and the location of each fluid must 
therefore be tracked.  

• We usually also have additional physics that must be 
accounted for at the interface, such as surface tension.  

• The governing equations can also be written in differential 
form using  using generalized functions

15. Let me conclude the introduction of the governing equations by making a few points: First of all, the 
conservation equations for mass and momentum apply to any flow situations, including flows of multiple 
immiscible fluids. Secondly, for multiphase flows, each fluid generally has properties that are different 
from the other fluids and the location of each fluid must therefore be tracked. And third, we usually have 
additional physics that must be accounted for at the interface, such as surface tension. The governing 
equations can also be written in differential form using generalized functions, as I will discuss briefly in the 
next few slides. 



DNS of Multiphase Flows

The “One-Fluid” 
Approach—

The Governing 
Equations in 

Differential Form

16. Although we work with the integral form of the governing equations here, since that leads directly to a 
finite volume method, many authors prefer to start from the differential form. Indeed, my guess is that 
more papers start from the differential form than the integral form, even when finite volume methods are 
used. 
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17. Since the marker function is discontinuous and the surface tension is singular, we need to work with 
generalized function to be able to write down the differential form. To do so we need to define the 
Heaviside step function in such a way that we can find its gradient. A particularly simple way is to define it 
as the area integral over the multiplication of two one-dimensional delta functions. Here x’ and y’ are the 
integration variables and x and y are the coordinates of the point where we are sitting. If x and y are inside 
the area, the x and y will be equal to x’ and y’ and the integral will be one but if x and y are outside the 
area, then the integral will be zero. The gradient is with respect to x and y so we can bring it under the 
integral. However, since the gradient is anti-symmetric with respect to the primed and unprimed 
variables, we can change the gradient to the gradient with respect to the primed variables, changing the 
sign. We now apply the divergence theorem, to write the integral as a surface integral (or a contour 
integral in 2D), and since the delta functions are zero everywhere except where x,y are equal to x’,y’, we 
can drop the circle on the integral.
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17-Cont.: By introducing local coordinates, n in the normal direction and s in the tangential direction, we 
can integrate over the tangent direction and thus are left with the results that the gradient of the Heaviside 
function is equal to a delta function times the local normal. Here we take the normal to be positive 
pointing away from the H=1 region so we need a minus sign.
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Alternatively, we have:

18. By applying the standard argument to the integral form, that the equations hold for an arbitrary control 
volume so the integrand must be zero, we get the differential form of the conservation equations. These 
equations are essentially the same as for single-phase flow, except the material properties are step-
functions and we must add a singular surface tension term. The momentum equations must, of course, 
be supplemented by the incompressibility condition and advection equations for the material properties. 
We generally refer to this form of the equations as the one-fluid, or one-field, formulation.

DNS of Multiphase Flows

The “one-fluid” formulation implicitly contains the proper 
interface jump conditions. Integrating each term over a 
small control volume centered on the interface:

=0 =0

The non-zero terms give the

Jump Condition:
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allows us to compute the gradient of H

rH =

Z

A

r[�(x� x0)�(y � y0)] da0 (1)

= �
Z

A

r0[�(x� x0)�(y � y0)] da0 (2)

= �
I

S

[�(x� x0)�(y � y0)n ds0 (3)

= �
Z

S

[�(x� x0)�(y � y0)n ds0 (4)

= �
Z

S

�(s)�(n)n ds0 (5)

= ��(n)n

where the last step follows from going to a coordinate system aligned with the interface
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19. It is important to keep in mind that the one-fluid form of the governing equations contains no 
approximations beyond the standard continuum equations. They do, in particular, include the jump 
conditions that we would have to apply at an interface if we solved separate equations for each fluid 
region. We can extract the jump conditions by integrating the one fluid equations over a small “pill box’’ 
containing the interface. The box follows the interface, which moves with the fluid velocity, so we 
combine the first two terms into the convective derivative and then integrate. Most of the terms have a 
finite value and go to zero as the size of the box goes to zero. The singular terms, however, do not do that 
and we are left with a statement that says that the jumps in the pressure and the viscous stresses are 
balanced by the surface tension. We note that we need to modify this argument slightly if there is mass 
transfer across the interface, such as for evaporation and condensation and if the surface tension is not 
constant.  

DNS of Multiphase Flows

Write:

and substitute into the momentum equation to get

Interface 
conditions

Momentum 
equation in 
phase 2

Momentum 
equation in 
phase 1

=0 =0 =0

We can also show that the “one-fluid” formulation contains the 
equations written separately for each fluid and the jump 
conditions:

The terms multiplied by the different generalized functions 
must each vanish separately

Use
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In terms of the average variables, the equation can be written as
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In terms of the average variables, the equation can be written as

20. We can also show that the “one-fluid” formulation contains the equations written separately for each 
fluid and the jump conditions by writing every variable as a function of the marker function and 
substituting into the one-fluid equations. By grouping terms depending on whether they are multiplied by 
H 2, H 1, or a delta function and using that each group must be equal to zero separately, we recover the 
equations for each region plus the jump conditions.
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Solution 
Strategies

21. Once we have the governing equations and have decided on which form, such as the integral form, to 
use, we need a solution strategy. There are several possibilities.
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To solve for the flow, the governing equations are discretized 
both in space and time. The computational domain is divided 
into a finite number of control volumes (finite volume methods) 
or a finite number of points is used to represent the flow (finite 
difference methods).

For flows involving moving interfaces, solution methods can be 
divided in two major categories 

1. Solving separate equations in each fluid using a moving 
grid aligned with the interface, and applying boundary 
conditions at the interface: 

2. Solving one set of equations for the whole domain on a 
fixed grid and incorporate the boundary conditions into the 
equations

22.To solve for the flow, the governing equations need to be discretized both in space and time. To do so 
we divide the computational domain into a finite number of control volumes for finite volume methods or 
use a finite number of points to represent the flow if we are using finite difference methods. For flows with 
moving interfaces, solution methods can be divided in two major categories. We can solve separate 
equations in each fluid using a moving grid aligned with the interface where we apply the appropriate 
boundary conditions. Or, we can solve one set of equations for the whole domain on a fixed grid and 
incorporate the boundary conditions directly into the governing equations. 
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Solving separate equations in each fluid using a moving grid 
aligned with the interface, and applying boundary conditions 
at the interface:

Solving one set of equations for the whole domain on a fixed 
grid and incorporate the boundary conditions into the equations

Stationary unstructured gridStationary structured grid

Body fitted structured grid Body fitted unstructured grid

23. These alternatives are shown schematically here. In the left column we use structured grids where the 
layout determines the relationship of each control volume to its neighbors, and on the right we use 
unstructured grids, where the shape and layout of the control volumes are arbitrary and we need to 
explicitly store information about their layout. In the top row we align gridlines or control volume 
boundaries with the interface but in the bottom row the interface is independent of the grid lines. While 
the grids in the bottom row are usually stationary, the grids in the top row must change with time, if the 
interface is moving. 
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Here we solve one set of equations for 
the whole domain on a fixed grid and 
incorporate the boundary conditions 
into the equations
The one-fluid formulation allows us to treat multi-phase flows 
in more or less the same way as single phase flows.

The main differences are:

The density and viscosity change discontinuously across the 
interface and have to be updated as the interface moves

Surface tension needs to be evaluated and added to the 
Navier-Stokes equations

24. In our case we will use regular structured grids where the interface can have an arbitrary orientation 
with respect to the grid lines. This overall strategy is, by far, the most common and so far the most 
successful approach to simulating flows with sharp interfaces. Even after we settle on this approach there 
are a number of alternative methods. Roughly speaking the questions are what numerical method we use 
to solve the Navier-Stokes equations and how do we track the interface separating the different fluids. 
These are somewhat separate questions and in the next lectures we will first develop a code to solve the 
Navier-Stokes equations and then present a few of the possibilities that are available for tracking the 
interface. We will then pick one of them to implement in the flow solver.


