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DNS of Multiphase Flows — Simple Front Tracking

In this lecture we apply our code to a few
problems and examine its performance. We will,
specifically, look at

+ Afalling drop and its collision with a no-slip wall

+ Arising bubble and its interaction with a no-slip
wall

» The Rayleigh-Taylor instability in a domain with
full slip vertical walls
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We usually do our simulations in arbitrary computations units
but report the results in non-dimensional units. For multi fluid
flows we often encounter the following non dimensional
numbers, where d and U stand for a length and a velocity
scale. Symbols for the various physical quantities follow the
usual convention.
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A Falling Drop
Hitting a Wall
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For a falling drop, as well as a rising bubble, the velocity can be
written as a function of the various parameters specifying the
problem, as well as time

U = f(pa, ptd Apg, 0, d, pos oy t)

Notice that we include gravity multiplied by the density difference,
sine that is the effective buoyancy force. Using the diameter d,
drop density, and density difference times gravity, as the repeated
variables we find that the non-dimensional relationship is:
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Or Fr = f(N,Eo,r,m,T)
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We can select other repeated variables to obtain other
relationships, but in all cases the problem is specified by
two non-dimensional numbers, plus the ratio of the
densities and viscosities. The particular non-dimensional
numbers selected usually depend on the various limiting
cases we want to explore.

Sometimes we can ignore the dependency on the viscosity
or surface tension, in which case the dynamics depends
only on one non-dimensional number. If both can be
ignored the problem is even simpler and is described by
one non dimensional number being equal to a constant.
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This is the problem that we have been using to test our code, except here
we will take the density and viscosity ratios to be larger. The physical and
numerical parameters are specified in the first few lines of the code

Lx=1.0; Ly=1.0; gx=0.0; gy=-100.0; sigma=10; % Domain size and
rho1=0.1; rho2=2.0; m1=0.01; m2=0.2; % physical variables
unorth=0; usouth=0; veast=0; vwest=0; time=0.0;

rad=0.15; xc=0.5; yc=0.7; % Initial drop size and location

Yommmmmmmmmnennnennanan Numerical variables -----------===-----=---
nx=32; ny=32; dt=0.001; nstep=200; maxit=200; maxError=0.001; beta=1.5; Nf=100;

This gives the following non-dimensional numbers:

Galileo Number

N o PBpgd® _ 2x19x1x100x03% Property ratios
oz 0.22 =
po 220 oy
Ebrtvés Number po 0.1
Apgd? 1.9 x 100 x 0.32 pa 0.2
= = =1. m="r%= "2 —9
Fo . 0 1.71 m 4o 001

Simulation of a
drop that falls
onto a rigid wall
and bounces
slightly

N=256.5
Eo=1.71
Pu/P1=20
Uo/th=20

A 32 by 32 grid.
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For initial checks of the code, we can use relatively benign
parameters, where we do not expect numerical difficulties
and the resolution required for convergence is modest.
Then we ask:

Does it look right?
Is the solution as symmetric as it should be?
Does rotating or flip the problem give the same solution?

Can we test some aspects of the code using analytical
solutions?

Does the solution converge under grid refinement?

Looking at how the velocity and the marker function evolve in
time is usually the first step in examining the results. In many
cases, however, we desire a more quantitative description of
the evolution. This is useful for

+ Assessing the convergence of the solution as the numerical
parameters, such as the grid resolution, are varied

+ Quantifying how the solution changes as the physical
parameters describing the problem are changed

The diagnostic variables, or the quantities of interest, can be
defined in several ways, but here we focus only on the simplest
ones, such as the area of the drop and the location and
velocity of its centroid
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The area of the drop should be constant since the flow is
incompressible, and monitoring the area serves as a check
on the accuracy of the computations.

To compute the area as well s several other quantities of
interest it is often useful to convert the elementary
definition as a volume or area integral to a surface integral
since surface integrals can be found with a high degree of
accuracy. Thus, the area is given by:

Area of drop
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Centroid of drop
7/xda—z/xyda 1/(?;; a;j)da
:i. V(x +y )da:§.7§<x2+y2>nds

The velocity of the drop centroid can be found by
differencing the location of the centroid
dX¢
dt
The velocity of the drop centroid can also be found by by
integrating over the boundary, but this is usually less accurate.

Ve =

Other elementary quantities of interest include the interface
length which is found by

Szjﬁ.ds




DNS of Multiphase Flows

DNS of Multiphase Flows

Here we use integration over the front to compute the area
and the centroids. The code to do so is:

9 DIAGNOSTICS

Area(is)=0; CentroidX(is)=0; CentroidY(is)=0; Time(is)=time;

for j=1:Nf, Area(is)=Area(is)+...
0.25™((xf(j+1)+xF([))*(yF(i+1)-yf([))-(yf(+1)+yf() " (xf(+1)-xf(])));
CentroidX(is)=CentroidX(is)+...
0.125%((xf(j+1)+xf()) "2+(yf(+1)+yf([))"2)*(yf(+1)-yf());
CentroidY (is)=CentroidY(is)-...
0.125%((xf(j+1)+xf(1)) "2+(yf(+1)+yf())2)* (xf(+1)-xf());
end
CentroidX(is)=CentroidX(is)/Area(is);CentroidY (is)=CentroidY (is)/Area(is);

% plot(Time,Area,'r','linewidth',2); axis([0 dt*nstep 0 0.1]);
% set(gca,'Fontsize',18, 'LineWidth',2)

% T1=Time;A1=Area;CX1=CentroidX;CY1=CentroidY;

% T2=Time;A2=Area;CX2=CentroidX;CY2=CentroidY;

Results for three grids

function at time 0.2
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A Rising
Bubble
Colliding with a
Wall

A bubble is the inverse of a drop, where a light fluid blob
moves in a heavy liquid. We will make the domain twice as
long, so that the bubble will have time to reach an
approximate steady state before hitting the top wall

Lx=1.0;Ly=2.0;9x=0.0;gy=-100.0; sigma=10; % Domain size and
rho1=2.0; rh02=0.05; m1=0.1; m2=0.005; % physical variables
unorth=0;usouth=0;veast=0;vwest=0;time=0.0;
rad=0.15;xc=0.5;yc=0.3; % Initial bubble size and location

Yom==mmmmmmmnmmnnnnns Numerical variables ------------==--------
nx=32;ny=64;dt=0.00125;nstep=400; Nf=100;
maxit=200;maxError=0.001;beta=1.5;
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Simulation of a
bubble rising in 18)
a narrow domain t6l
and colliding )
with the top rigid 1af
wall
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The Rayleigh-
Taylor
Instability

The Rayleigh-Taylor instability is one of the classical test
problems for multiphase simulations. Initially a heavy fluid sits
above a lighter one, but once the interface is perturbed slightly
the heavy fluid and the light one trade places.

For this problem we need to change our code slightly:

* We change the boundary condition on the vertical walls to
full-slip for the flow solver, and

* The front now stretches between the walls instead of being
closed

» The boundary conditions for the front, where it meets the
walls is simplified by assuming that the interface is flat there
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Making the vertical walls full-slip is a very minor change.

We want the shear stress there to be zero, so the
velocity gradient is zero and this is accomplished by
putting the tangent velocity at the ghost point equal to
the first tangent velocity inside the domain.

The changes to the front are also relatively simple. The
biggest decision is whether there is a front point on the
boundary or whether we let put the boundary between

the first point and the second one?

Here we choose to do the latter, so that the first and the
last points are ghost points outside the computational
domains.

The changes in the code are relatively minor. First of all, we
modify the physical and numerical parameters slightly and

change the initial conditions:

o

Lx=1.0;Ly=2.0;9x=0.0;gy=-100.0; sigma=5.0; % Domain size and

rho1=1.0; rho2=4.0; m1=0.01; m2=0.05;

% physical variables

unorth=0;usouth=0;veast=0;vwest=0;time=0.0;

nx=32; ny=64; dt=0.00125; nstep=300;
maxit=200; maxError=0.001; beta=1.5; Nf=100;

R Initial Conditions -----------------=-----
r=zeros(nx+2,ny+2)+rho1;m=zeros(nx+2,ny+2)+m1; % Set density and viscosity

for i=1:nx+2,for j=1:ny+2;

if(y()>1.2+0.1%cos(2.0*pi*x(i))),

end, end

% for the domain and the drop

r(i,j)=rho2; m(i,j)=m2; chi(i,j)=1.0; end,
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Then we need to change a few things

After finding the velocity, we add a line:
uf(2)=0; uf(Nf+1)=0; % Make sure the endpoint move along wall

After moving the points we change a line
xf(1)=-xf(2);yf(1)=yf(2);xf(Nf+2)=2*Lx-xf(Nf+1);yf(Nf+2)=yf(Nf+1);

After finding the marker function we add a line:
chi(1,:)=chi(2,:); chi(nx+2,:)=chi(nx+1,:); % Correct density on sides

Before updating the velocities we modify the boundary conditions
v(1,1:ny+1)=v(2,1:ny+1);v(nx+2,1:ny+1)=v(nx+1,1:ny+1);

Before finding diagnostics we change a line
uf(1)=uf(2);vf(1)=vf(2);uf(Nf+2)=uf(Nf+1);vf(Nf+2)=vf(Nf+1); % Front

After adding and deleting points we change the updating of the ghost points
xf(1)=-xf(2);yf(1)=yf(2);xF(Nf+2)=2*Lx-xf(Nf+1);yf(Nf+2)=yf(Nf+1);

Change the plotting slightly:
plot(xf(1:Nf+2),yf(1:Nf+2),'k', linewidth',3);pause(0.01)

Simulation of a
Rayleigh-Taylor
instability where a
heavy fluid falls into
a lighter one.

Nondimensional
numbers based on
the properties of the
heavy fluid and d=1.

N=4.8 x 105
Eo=60
ov/po=4
Hi/lib=5

A 32 by 64 grid.
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«Time 0.25| Convergence

The current code can easily be modified for many other
problems, such as waves, bubbles and drops coalescing

:vj Max. Amplity with each other or an interface, and more than one

2

12 bubble or drop.
‘64 x 128 ue The current code is written assuming a single
o2 Min. Amplitude continuous interface. For complex problems with many
0 o 53 55 o bubbles or drops, where there are several unconnected
interfaces, a more general interface data structure is
Interface Length generally preferred.
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